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ARTICLES

DEATH  OF  PARADOX:  THE  KILLER  LOGIC

BENEATH  THE  STANDARDS  OF  PROOF

Kevin M. Clermont*

The prevailing but contested view of proof standards is that fact-finders
should determine facts by probabilistic reasoning.  Given imperfect evidence,
they first should ask themselves what they think the chances are that the
burdened party would be right were the truth to become known, and they then
should compare those chances to the applicable standard of proof.

I contend that for understanding the standards of proof, the modern
versions of logic—in particular, fuzzy logic and belief functions—work better
than classical logic and probability theory.  This modern logic suggests that
fact-finders first assess evidence of an imprecisely perceived and described
reality to form a fuzzy degree of belief in a fact’s existence, and they then
apply the standard of proof by comparing their belief in a fact’s existence to
their belief in its negation.

This understanding nicely explains how the standard of proof actually
works in the law world.  While conforming more closely to what we know of
people’s cognition, the new understanding captures better how the law formu-
lates and manipulates the standards and it also gives a superior mental
image of the fact-finders’ task.  One virtue of this conceptualization is that it
is not a radical reconception.  Another virtue is that it nevertheless manages
to resolve some stubborn problems of proof, including the infamous conjunc-
tion paradox.

 2013 Kevin M. Clermont.  Individuals and nonprofit institutions may
reproduce and distribute copies of this Article in any format at or below cost, for
educational purposes, so long as each copy identifies the author, provides a citation to
the Notre Dame Law Review, and includes this provision in the copyright notice.
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Le seul véritable voyage, le seul bain de Jouvence, ce ne serait pas d’aller
vers de nouveaux paysages, mais d’avoir d’autres yeux, de voir l’univers

avec les yeux d’un autre, de cent autres . . . .**

** 12 MARCEL PROUST, À LA RECHERCHE DU TEMPS PERDU 69 (1923). But cf. PIERRE

BAYARD, COMMENT PARLER DES LIEUX OÙ L’ON N’A PAS ÉTÉ? (2012) (“contrairement aux
idées reçues, il est tout à fait possible d’avoir un échange passionnant à propos d’un endroit où
l’on n’a jamais mis les pieds”); PIERRE BAYARD, HOW TO TALK ABOUT BOOKS YOU HAVEN’T
READ, at xvii (2007) (“In my experience . . . it’s totally possible to carry on an
engaging conversation about a book you haven’t read . . . .”); Deborah Solomon, My
Reader, My Double, N.Y. TIMES MAG., http://www.nytimes.com/2007/10/28/
magazine/28wwln-Q4-t.html (Oct. 28, 2007) (interviewing Pierre Bayard, a Proust
expert, who admits to having only skimmed Proust); The Books We Lie About, THE 6TH

FLOOR (May 10, 2012, 5:54 PM), http://6thfloor.blogs.nytimes.com/2012/05/10/
the-books-we-lie-about/ (listing How to Talk About Books You Haven’t Read among
“books we’ve been less than truthful about having read”); Top Ten Books People Lie
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INTRODUCTION

We have made tremendous strides, albeit only recently, toward
understanding the process of proof.  The wonderful “new evidence”
scholarship has made especial progress by shifting the focus of evi-
dence scholarship from rules of admissibility to the nature of proof,
while opening the door to interdisciplinary insights, including those
from psychology.1  Yet the new work has tended to remain either too
wedded or overly hostile to subjective probabilities for evaluating evi-
dence2 and to Bayes’ theorem for combining evidence,3 and so caused
the debates to become “unproductive and sterile.”4  In any event, the

About Reading, SUPERGIRL SAVES THE WORLD (Mar. 13, 2010), http://realsupergirl.
wordpress.com/2010/03/13/top-ten-books-people-lie-about-reading (listing In
Remembrance of Things Past/À la recherche du temps perdu).

1 See generally WILLIAM TWINING, RETHINKING EVIDENCE 237–48 (2d ed. 2006)
(“[I]t is illuminating to view questions about evidence and proof as questions about
the processing and uses of information in important decisions in litigation.”); Richard
Lempert, The New Evidence Scholarship: Analyzing the Process of Proof, in PROBABILITY AND

INFERENCE IN THE LAW OF EVIDENCE 61, 61 (Peter Tillers & Eric D. Green eds., 1988)
(“Evidence is being transformed from a field concerned with the articulation of rules
to a field concerned with the process of proof. . . . [D]isciplines outside the law, like
mathematics, psychology and philosophy, are being plumbed for the guidance they
can give.”); Roger C. Park & Michael J. Saks, Evidence Scholarship Reconsidered: Results of
the Interdisciplinary Turn, 47 B.C. L. REV. 949, 949 (2006) (“[T]he changing field of
evidence scholarship . . . has become decidedly interdisciplinary.”).  Although “new,”
this work represented the necessary return to abandoned efforts by past greats such as
Wigmore. See, e.g., TERENCE ANDERSON ET AL., ANALYSIS OF EVIDENCE (2d ed. 2005)
(building on JOHN HENRY WIGMORE, THE SCIENCE OF JUDICIAL PROOF (3d ed. 1937)).

2 See generally RICHARD EGGLESTON, EVIDENCE, PROOF AND PROBABILITY 3 (2d ed.
1983) (“It is the purpose of this book to discuss the part that probabilities play in the
law, and the extent to which existing legal doctrine is compatible with the true role of
probabilities in the conduct of human affairs.”); Eric D. Green, Foreword: Probability
and Inference in the Law of Evidence, 66 B.U. L. REV. 377, 377 (1986) (“[Q]uestions
about the nature of proof invariably raise questions about theories of inference and
the proper use of mathematical and statistical evidence and probability arguments in
courts.”); Symposium, Decision and Inference in Litigation, 13 CARDOZO L. REV. 253, 253
(1991) (“One of the more striking features of this new approach to the study of evi-
dence was the use of symbolic notation and formal argument, particularly mathemati-
cal notation and mathematical argument.”); cf. V.C. Ball, The Moment of Truth:
Probability Theory and Standards of Proof, 14 VAND. L. REV. 807, 809–12 (1961) (treating
frequentist theory); Laurence H. Tribe, Trial by Mathematics: Precision and Ritual in the
Legal Process, 84 HARV. L. REV. 1329, 1344–50 (1971) (treating subjective theory).

3 See generally SHARON BERTSCH MCGRAYNE, THE THEORY THAT WOULD NOT DIE

(2011) (recounting the centuries of controversy generated by Bayes’ theorem).
4 Peter Tillers, Trial by Mathematics—Reconsidered, 10 LAW PROBABILITY & RISK

167, 169–170 (2011) (providing a nice summary of the major developments since
1970). But see Roger C. Park et al., Bayes Wars Redivivus—An Exchange, 8 INT’L COM-
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debates have left unsolved some troubling problems and paradoxes in
our law on proof.

The “New Logic”

One specific diagnosis of this shortcoming is that the new evi-
dence tended to neglect the contemporaneous advances in logic.5
The new, so-called nonclassical logic looks and sounds much like stan-
dard logic but refuses to accept some critical assumptions.6  Most com-
monly, the assumption rejected is that every proposition must either
be true or be false, an assumption called the principle of bivalence.
But if propositions are not bivalent, so that both P and notP can be
true and false to a degree, then one can show that sometimes P equals
notP—which is a rather disquieting contradiction.7  Fashioning the
new logic thus faced some challenges in its development.

The first move in the new logic of special interest to lawyers
relates to and builds on the branch of modern philosophy, beginning
with Bertrand Russell’s work, that struggled with the problem of
vagueness.8  Work on vagueness addresses matters such as the famed
sorites paradox of ancient Greece (“sorites” comes from the Greek
word for heap):

MENT. ON EVIDENCE iss. 1, art. 1 (2010) (presenting an electronic exchange amongst
evidence scholars debating the major issues in evidence law).

5 See Lea Brilmayer, Second–Order Evidence and Bayesian Logic, 66 B.U. L. REV. 673,
688–91 (1986) (suggesting that diagnosis); Tillers, supra note 4, at 171 (presenting a R
similar argument).  Some Bayesians, however, were sympathetic to the new logic. See,
e.g., David A. Schum, Probability and the Processes of Discovery, Proof, and Choice, 66 B.U.
L. REV. 825, 847–53, 865–69 (1986).

6 See THEODORE SIDER, LOGIC FOR PHILOSOPHY 72–73 (2010).
7 See Peter Suber, Non–Contradiction and Excluded Middle, http://www.earlham.

edu/~peters/courses/logsys/pnc-pem.htm (last visited Jan. 15, 2013).
8 Bertrand Russell, Vagueness, 1 AUSTRALASIAN J. PSYCHOL. & PHIL. 84 (1923); see

Bertrand Russell, The Philosophy of Logical Atomism, in LOGIC AND KNOWLEDGE 175, 180
(Robert Charles Marsh ed., 1956) (“Everything is vague to a degree you do not realize
till you have tried to make it precise, and everything precise is so remote from every-
thing that we normally think, that you cannot for a moment suppose that is what we
really mean when we say what we think.”); see also, e.g., TIMOTHY WILLIAMSON, Preface
to VAGUENESS, at xi (1996) (“[V]agueness consists in our ignorance of the sharp
boundaries of our concepts, and therefore requires no revision of standard logic.”);
Hartry Field, No Fact of the Matter, 81 AUSTRALASIAN J. PHIL. 457 (2003) (countering
the Williamson view); Hartry Field, Indeterminacy, Degree of Belief, and Excluded Middle,
34 NOÛS 1, 20 (2000) (referencing work on belief functions); Hartry Field, Vagueness,
Partial Belief, and Logic, in MEANINGS AND OTHER THINGS (G. Ostertag ed., forthcoming
2013), available at http://philosophy.fas.nyu.edu/docs/IO/1158/schiffer2004b.pdf
(incorporating ideas similar to fuzzy logic).
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Premise 1: if you start with a billion grains of sand, you have a heap
of sand.

Premise 2: if you remove a single grain, you still have a heap.

If you repeat the removal again and again until you have one grain of
sand left, then you will by logic still have a heap.  But there is no heap.
Thus, heap equals nonheap.  Two true premises yield an absurd con-
clusion (or—to picture the paradox in another common way—start
with Tom Cruise’s full head of hair, and begin plucking hairs, yet Tom
will by logic never become bald).

At some point the heap undeniably became a nonheap.  Was
there a fixed boundary?  No, this is not a way out—at least according
to most philosophers.  A different path taken in the attempt to avoid
the paradox leads to the embrace of many-valued logic.9  This form of
logic boldly declines the simplification offered by two-valued, or biva-
lent, logic built on a foundation of true/false with an excluded mid-
dle.  It instead recognizes partial truths.  Both a statement and its
opposite can be true to a degree.  In other words, sometimes you have
neither a heap nor a nonheap, but something that falls in between,
with the statement “this is a heap” being both true and not true.10

The second interesting elaboration of the new logic involves
developments in the field of imprecise probability.11  This field of mathe-
matics provides a useful extension of probability theory whenever

9 See generally J.C. BEALL & BAS C. VAN FRAASSEN, POSSIBILITIES AND PARADOX

(2003) (introducing the concept of many-valued logic).
10 The new logic gives a pretty good answer to the sorites paradox itself, by

allowing a response to “heap vel non?” in terms of a degree of heapness rather than a
yes-or-no response. See BART KOSKO, FUZZY THINKING 94–97 (1993).  But it is not a
perfect answer, say the super-sophisticated. See R. M. Sainsbury & Timothy William-
son, Sorites, in A COMPANION TO THE PHILOSOPHY OF LANGUAGE 458, 475–77 (Bob Hale
& Crispin Wright eds., 1997) (“It does not do justice to higher-order vagueness[.]”);
Nicholas J.J. Smith, Fuzzy Logic and Higher–Order Vagueness, in LOGICAL MODELS OF

REASONING WITH VAGUE INFORMATION 1, 1 (Petr Cintula et al. eds., forthcoming 2012),
available at http://www-personal.usyd.edu.au/~njjsmith/papers/SmithFuzLogHOV
ag.pdf (“[T]heories of vagueness based on fuzzy logic . . . give rise to a problem of
higher-order vagueness or artificial precision.”). But see TIMOTHY A. O. ENDICOTT, VAGUE-

NESS IN LAW 77–136 (2000) (“I conclude that higher-order vagueness is truculent: a
theory should neither deny it, nor assert a particular number of orders of vagueness,
nor even assert that ordinary vague expressions are vague at all orders.”). See generally
LIARS AND HEAPS (JC Beall ed., 2003) (examining soritical paradoxes in detail); Kevin
M. Clermont, Foreword: Why Comparative Civil Procedure?, in KUO–CHANG HUANG,
INTRODUCING DISCOVERY INTO CIVIL LAW, at xviii n.50 (2003) (discussing self-contra-
dictory statements).

11 See generally Peter Walley, Statistical Reasoning with Imprecise Probabilities, 42
MONOGRAPHS ON STATISTICS AND APPLIED PROBABILITY (1991) (examining the concept
of, and methods of assessing, imprecise probabilities).
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information is conflicting or scarce.  The approach can work with
many-valued logic as well as with two-valued logic.  The basic idea is to
use interval specifications of probability, with a lower and an upper
probability.  Despite its name, imprecise probability is more complete
and accurate than precise probability in the real world where proba-
bilistic imprecision prevails.  In fact, traditional bivalent probability
(within which I include the doctrine of random chance as well as the
much newer subjective probability) appears as a special case in this
theory.  The rules associated with traditional probability, except those
based on assuming an excluded middle, carry over to imprecise
probability.

All this logic may be new, but it has an extended history of fore-
runners.  Threads of many-valued logic have troubled thinkers since
before Aristotle embraced bivalence,12 even if their thoughts found
more receptive soil in the East than in the West.13  Imprecise
probability goes back to the nineteenth century.14  Nevertheless, the
new logic has enjoyed a recent flowering, inspired by the development
of quantum mechanics and instructed by those just-described
advances in philosophy and mathematics.

“Fuzzy Logic”

The particular bloom known as fuzzy logic finds its roots in the
seminal 1965 article by Berkeley Professor Lotfi Zadeh.15  His critical
contribution was to use degrees of membership in a fuzzy set running
from 1 to 0, in place of strict membership in a crisp set classified as
yes/no or as either 1 or 0.  Yet fuzzy logic is not at all a fuzzy idea.16  It
became a formal system of logic, one that is by now highly developed
and hence rather complicated.17

I do not mean to suggest that fuzzy logic resolves all the philo-
sophical problems of vagueness (or that it is especially popular with

12 See James F. Brulé, Fuzzy Systems—A Tutorial, http://www.austinlinks.com/
Fuzzy/tutorial.html (last visited Jan. 15, 2013) (recounting the history briefly).

13 See KOSKO, supra note 10, at 69–78 (giving an impassioned attack on the West’s R
hostility to many-valued logic, but also fleshing out the historical account).

14 See GEORGE BOOLE, AN INVESTIGATION OF THE LAWS OF THOUGHT (London,
Walton and Maberly 1854) (doing the early work); cf. JOHN MAYNARD KEYNES, A TREA-

TISE ON PROBABILITY (1921).
15 L.A. Zadeh, Fuzzy Sets, 8 INFO. & CONTROL 338 (1965).
16 Zadeh substituted the term “fuzzy” for “vague” more to be provocative than to

be descriptive. See KOSKO, supra note 10, at 19–20, 142, 145, 148. R
17 For an accessible introduction, see Timothy J. Ross & W. Jerry Parkinson, Fuzzy

Set Theory, Fuzzy Logic, and Fuzzy Systems, in FUZZY LOGIC AND PROBABILITY APPLICATIONS

29 (Timothy J. Ross et al. eds., 2002).
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pure philosophers).  I am suggesting that fuzzy logic is a very useful
tool for some purposes.  Of course, it has become so well-known and
dominant because of its countless practical applications, especially in
the computer business and consumer electronics.18  But its theory is
wonderfully broad, extending easily to degrees of truth.  It thereby
proves very adaptable in imaging truth just as the law does.  Indeed, of
the various models for handling uncertainty, fuzzy logic seems to cap-
ture best the kinds of uncertainty that most bedevil law.19  Accord-
ingly, writers have previously voiced suspicions that it might relate to
legal standards of proof.20

Herein, fuzzy logic will provide a handle on how to represent our
legal understandings of likelihood.21  But it is not an exclusive tool.
“In order to treat different aspects of the same problems, we must
therefore apply various theories related to the imprecision of knowl-
edge.”22  Another, compatible theory will function herein as a descrip-
tion of how to make decisions based on those likelihood
understandings.

“Belief Functions”

Useful for that purpose is Rutgers Professor Glenn Shafer’s
imposing elaboration of imprecise probability from 1976.23  His work

18 See KOSKO, supra note 10, at 157–200 (describing fuzzy computer systems). R
19 See Liu Sifeng, Jeffrey Forrest & Yang Yingjie, A Brief Introduction to Grey Systems

Theory, in 2011 IEEE INTERNATIONAL CONFERENCE ON GREY SYSTEMS AND INTELLIGENT

SERVICES 1, 6 (2011).
20 See, e.g., Kevin M. Clermont, Procedure’s Magical Number Three: Psychological Bases

for Standards of Decision, 72 CORNELL L. REV. 1115, 1122 n.36 (1987); Schum, supra
note 5, at 865–69. R

21 In statistical terminology, “likelihood” (the chance that the data would be
observed, given a hypothesis as true) is not wholly equivalent to “probability” (the
chance that a hypothesis is true, given the observed data). See Richard M. Royall,
Statistical Evidence, 71 MONOGRAPHS ON STATISTICS AND APPLIED PROBABILITY, at 5–6, 28
(1997).  But for most people, likelihood means probability.  I use likelihood here in
that way, with perhaps the connotation of an intuitive measure of probability and with
the benefit of conforming to the common legal, and probabilistic, usage of “more
likely than not.”

22 MIRCEA REGHIS & EUGENE ROVENTA, CLASSICAL AND FUZZY CONCEPTS IN MATHE-

MATICAL LOGIC AND APPLICATIONS 354 (1998) (referencing Shafer’s work on imperfect
reasoning); see DAVID A. SCHUM, THE EVIDENTIAL FOUNDATIONS OF PROBABILISTIC REA-

SONING 41, 201 (1994) (“[N]o single view of probabilistic reasoning captures all of the
behavioral richness evident in such tasks.”).

23 GLENN SHAFER, A MATHEMATICAL THEORY OF EVIDENCE (1976) (using “evi-
dence” in a much broader sense than legal evidence); see also Glenn Shafer, Perspec-
tives on the Theory and Practice of Belief Functions, 4 INT’L J. APPROXIMATE REASONING 323
(1990) (complementing his own earlier work); Lotfi A. Zadeh, Book Review, AI MAG.,
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on belief functions built a bridge between fuzzy logic and traditional
probability, and in the process nicely captured our legal decision-mak-
ing scheme.24  He used the word “belief” to invoke neither firm knowl-
edge nor some squishy personal feeling, but rather the fact-finders’
attempt to express their degree of certainty about the state of the real
world as represented by the evidence put before them.25  By allowing
for representation of ignorance and indeterminacy of the evidence,
he enabled beliefs to express uncertainty, again on a scale running
from 1 to 0.26  Indeed, his theory of belief functions rests on a highly
rigorous mathematical base, managing to get quite close to achieving
a unified theory of uncertainty.27

Belief function theory does not constitute a system of logic,
unlike fuzzy logic.  Instead, it is a branch of mathematics, like tradi-
tional probability.28  Just as probability serves two-valued logic by han-
dling a kind of uncertainty that the underlying logic system does not
otherwise account for, belief function theory delivers mathematical
notions that can extend many-valued logic.  While probability treats
first-order uncertainty about the existence of a fact, belief function
notions supplement fuzzy logic by capturing and expressing the inde-
terminacy resulting from scarce information or conflictive evidence
concerning the fact.  Shafer’s theory is thus similar to a scheme of
second-order probability,29 which admittedly has hitherto failed both

Fall 1984, at 81, 83 (reviewing SHAFER, supra, and treating Shafer’s theory as a version
of fuzzy logic’s possibility theory).

24 See Ron A. Shapira, Economic Analysis of the Law of Evidence: A Caveat, 19 CAR-

DOZO L. REV. 1607, 1614 (1998) (“In the legally relevant literature, it was Professor
Glenn Shafer who introduced fuzzy measures as appropriate formalizations of episte-
mic functions.”).

25 See Glenn Shafer, The Construction of Probability Arguments, 66 B.U. L. REV. 799,
801–04 (1986). But cf. DAVID CHRISTENSEN, PUTTING LOGIC IN ITS PLACE 12–13, 69
(2004) (saying that some use “belief” as an unqualified assertion of an all-or-nothing
state of belief); L. Jonathan Cohen, Should a Jury Say What It Believes or What It Accepts?,
13 CARDOZO L. REV. 465 (1991) (using “belief,” for his purposes, in the sense of a
passive feeling).  One could view belief as a black box, thereby avoiding my prelimi-
nary foray into fuzzy logic by starting analysis at the post-belief stage: an anti-probabil-
ist might say that the fact-finder somehow forms a belief and that the law’s concern
lies in how the fact-finder should handle that belief.  However, I view degrees of belief
as resting on degrees of certainty, thus necessitating initial consideration of the vari-
ous models for handling uncertainty.

26 For an accessible introduction, see SCHUM, supra note 22, at 222–43. R
27 See Didier Dubois & Henri Prade, A Unified View of Uncertainty Theories

(Mar. 7, 2012) (unpublished manuscript).
28 See IRVING M. COPI ET AL., INTRODUCTION TO LOGIC ch. 14 (14th ed. 2011).
29 Cf. Schum, supra note 5, at 868 (distinguishing belief functions from second- R

order probability).
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the statistically minded30 and psychologically minded31 as a way to
explain standards of proof.

Relation to Law

My thesis is that a better explanation of what the law does with
proof lies in the new logic than in two-valued logic and its traditional
probability.  The explanation is indeed so good that one must enter-
tain the notion that the law assumed and embraced the tenets of the
new logic long before logicians caught up with the law.

Such an embrace by the law would not be that surprising.  Law
was one of the first of society’s endeavors in which things appeared as
neither completely true nor completely untrue.  Aristotelian two-val-
ued logic did not work for such partial truths.  The common law
seemed, early and intuitively, to draw many-valued logic from natural

30 A suggestive elaboration on traditional probability theories appeared in Neil B.
Cohen, Confidence in Probability: Burdens of Persuasion in a World of Imperfect Knowledge,
60 N.Y.U. L. REV. 385 (1985) [hereinafter Cohen, Confidence in Probability].  That arti-
cle advanced a new theory of standards of proof based on the statistical concept of
confidence intervals.  It described how sure a fact-finder is, employing not only a
point estimate of probability but also a level of confidence, with sureness increasing as
either component rises.  But the attempt admittedly failed. Compare Neil B. Cohen,
Commentary, The Costs of Acceptability: Blue Buses, Agent Orange, and Aversion to Statisti-
cal Evidence, 66 B.U. L. REV. 563, 569 (1986) (qualifying his own argument), and Neil
B. Cohen, Conceptualizing Proof and Calculating Probabilities: A Response to Professor Kaye,
73 CORNELL L. REV. 78, 91–93 (1987) [hereinafter Cohen, Conceptualizing Proof] (con-
ceding that confidence relates solely to the probability of avoiding false positives),
with D.H. Kaye, Commentary, Do We Need a Calculus of Weight to Understand Proof Beyond
a Reasonable Doubt?, 66 B.U. L. REV. 657, 667 n.22 (1986) (suggestively criticizing Neil
Cohen’s approach), and D.H. Kaye, Apples and Oranges: Confidence Coefficients and the
Burden of Persuasion, 73 CORNELL L. REV. 54, 54, 56–58 (1987) (expanding his
criticism).

31 A similarly suggestive attempt to explain standards of proof in terms of psycho-
logical confidence appeared in Christoph Engel, Preponderance of the Evidence Versus
Intime Conviction: A Behavioral Perspective on a Conflict Between American and Continen-
tal European Law, 33 VT. L. REV. 435 (2009).  That article posited that over the proof
process’s course, the fact-finder generates a level of confidence in the decision by
considering the degree of coverage (which means the story accounts for all the evi-
dence), coherence (which means it is internally consistent, plausible with respect to
the fact-finder’s world knowledge, and complete without striking gaps in expected
components), and uniqueness (which means the absence of plausible alternative sto-
ries). Id. at 453.  The fact-finder achieves this by an automatic or unconscious pro-
cess.  The clearer the view of the case that the chosen story delivers to the fact-finder,
the more confident the fact-finder will be. Id. Against this level of confidence, the
fact-finder would somehow apply the standard of proof.  I tried to demonstrate his
theory’s prescriptive and descriptive failings in Kevin M. Clermont, Standards of Proof
Revisited, 33 VT. L. REV. 469 (2009).
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language and daily life.  At about the same time, in the late eighteenth
century, law and nascent probability theory began interacting.32  That
interaction caused the law to become more open about accepting
uncertainty.  However, traditional probability’s inherent appeal pre-
vented observers, unknowingly indoctrinated in classical bivalent
logic, from seeing the law’s deep logical underpinning for what it
really was.33

Now the time has come to excavate law’s multivalent foundation.
The site chosen for excavation is the highly controversial subject of
standards of proof.  I refer to the subject in its broad sense, as cover-
ing anything that a court subjects to the proof process in order to
establish truth.  The subject includes many applications of law to fact,
and also odd kinds of facts such as a prediction of an event, but for
simplicity I shall usually refer to the whole as “facts.”

The prevailing but contested view is that fact-finders should
determine facts by this line of probabilistic reasoning: although given
imperfect evidence, they should ask themselves what they think the
chances are that the burdened party would be right if the truth were
somehow to become known.

So, how would fuzzy logic and belief functions better explain
standards of proof?  The initial step in tying the new logic to law is to
admit that the process of proof investigates a world that is not a two-
valued world where disputed facts are either true or false.  Instead, a
good portion of the real world—by which, to be technically fine, I
mean the world as perceived by humans and described by natural lan-
guage—is a vague, imprecise, or many-valued world, where partial
truths exist.  Or, at the very least, we will never know whether a dis-
puted fact is certainly true or false.  So, the probability of truth is not
the only relevant legal question.  A second step is to recognize that the
fact-finder’s complexly constructed belief is the more relevant ques-
tion.  We are not as concerned with how certain the fact-finder is in a
world of random uncertainty, as we are with the degree of truth the
fact-finder constructs in a world of vague imprecision.  The third step
builds on the idea that the fact-finder will believe facts as true to a
degree.  We can speak of degrees of belief.  Indeed, on the basis of
incomplete, inconclusive, ambiguous, dissonant, and untrustworthy

32 See Kevin M. Clermont & Emily Sherwin, A Comparative View of Standards of
Proof, 50 AM. J. COMP. L. 243, 256–57 (2002).

33 Otherwise, probabilistic theorizing influenced the law only lightly until it
began quite recently a major assault.  The first effective volleys of that assault on the
law arguably were John Kaplan, Decision Theory and the Factfinding Process, 20 STAN. L.
REV. 1065 (1968), and Michael O. Finkelstein & William B. Fairley, A Bayesian
Approach to Identification Evidence, 83 HARV. L. REV. 489 (1970).



\\jciprod01\productn\N\NDL\88-3\NDL301.txt unknown Seq: 11  4-APR-13 15:47

2013] the  killer  logic  beneath  the  standards  of  proof 1071

evidence, some of the fact-finder’s belief should remain indetermi-
nate.  The output is not a probability, but what a logician would call a
non-additive degree of belief in the fact’s existence.34  In the fourth
step, the standard of proof will call on the fact-finder to weigh those
degrees of belief.

The key distinction between probabilities and degrees of belief is
subtle, as attested by the confusion among people discussing proof
over the long years.  Both systems numerically quantify uncertainty by
using numbers in the unit interval [0,1].  But the distinction’s conse-
quences are not subtle.  Degrees of belief handle imprecision better
than traditional probability theory, and they better capture the effect
of imperfect evidence.  Also, abandoning probabilities opens the door
to the logician’s powerful tools for handling beliefs: fuzzy logic pro-
vides a way to represent imprecise views of the real world, and belief
functions give the tools for translating beliefs about facts into legal
decisions.

Another justification for so conceptualizing the process of proof
is that several significant paradoxes of the law will melt away.  Most
paradoxes result from the limits on existing frames of reference and
tools for analysis.  Some paradoxes remain out of reach of today’s
comprehension.  By “death of paradox” in my title, I simply mean that
one can get a handle on many seeming paradoxes of the law by utiliz-
ing newly available frameworks and tools.  As I say, this Article’s view
of proof works so well in this regard that it appears to have been all
along the law’s intuitive conceptualization of proof.  Thus, after
decades of reading, thinking, and writing about standards of proof, I
feel as if I am finally beginning to understand them.

Present Project

This Article will attempt to make good on these grand claims,
which I forward tentatively despite my sometimes-assertive tone.  I
shall sequentially discuss the four steps of fact-finding: (I) assessing
evidence related to a single fact, (II) conjoining separate assessments
of different facts, (III) analyzing the resultant beliefs, and (IV) apply-
ing the standard of proof.  At each step, I shall weave in the relevant
learning from the new logic and then show how it illuminates one of
the key features of the law of proof:  (1) the gradated scale of likeli-

34 See Shapira, supra note 24, at 1613–16 (distinguishing additive from non-addi- R
tive).  Consequently, a belief and a belief in its negation will most often not add to
one. See generally Rolf Haenni, Non–Additive Degrees of Belief, in DEGREES OF BELIEF 121
(Franz Huber & Christoph Schmidt-Petri eds., 2009) (elaborating on this concept).



\\jciprod01\productn\N\NDL\88-3\NDL301.txt unknown Seq: 12  4-APR-13 15:47

1072 notre dame law review [vol. 88:3

hood, (2) the conjunction paradox, (3) the burden of production,
and (4) the burden of persuasion.

The primary focus of the Article is descriptive and explanatory,
not prescriptive other than by implication.  I seek to reveal what the
law actually tells its fact-finders to do.  Over the centuries the law’s
charge to fact-finders has evolved, by a process entailing considera-
tions of both ideal fact-finding and also human limitations.  I am not
championing new ideals or new limitations.  My real interest here lies
in exposing the proof process that the law has chosen.  I believe and
shall try to demonstrate that the law has embraced what became the
new logic, likely because that version of logic captures the epistemic
function of law better than classical logic and probability theory.

A deeper understanding of what the law says about its process of
proof could surely lead to more knowledge and to improved law.  It
could stimulate new research into how fact-finders actually decide.  It
could lead to legal reforms, such as clearer instructions on the stan-
dards of proof.  But reform is not the present exploratory project.
Indeed, one message of this Article might be that the law currently
does a much better job in structuring fact-finding than one would
guess by reading its many critical commentators.

To encapsulate, the aim of this Article is to apply the new logic to
the law.  The conclusion will be that this logic snaps onto the law as a
seemingly perfect fit.

I. ASSESSING EVIDENCE

This Part will convey the basics of fuzzy logic, when used as a way
to gauge degrees of truth based on assessment of evidence related to a
disputed fact.  Then, this Part will show how the law has seemingly
employed fuzzy logic to construct, for use in its standards of decision,
a gradated scale of likelihood stretching across the spectrum from the
slightest possibility up to virtual certainty.

A. Theories

1. Psychology Theories

How does the fact-finder reach a decision?  No one knows.  Psy-
chologists cannot tell us exactly how people evaluate and combine evi-
dence and, for that matter, can tell us almost nothing about how they
weigh assessments of evidence against a standard of proof.35

35 See Clermont, supra note 31, at 475–79, 485 (recounting the state of psycholog- R
ical knowledge on evidence processing and standards of proof).
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Introspection might suggest that there is a knowledge arc, lead-
ing up by induction and abduction, and then down by deductive test-
ing.36  The upward arc rests on observations, which generate new
hypotheses explaining the observations.  The downward arc involves
testing the hypotheses to reach conclusions.  Throughout, there is
evaluation, combination, and weighing of evidence by some method.

To expose that method, social scientists have tried to model the
cognitive black box by experimentally comparing inputs and outputs.
One result is the model called information integration theory.37  It tries to
describe how humans naturally evaluate and combine information to
produce judgment.  Although only one of many contesting theories,
and a relatively optimistic one at that, information integration theory
has suggestive powers, making description worthwhile.  According to
the theory, the human decision-maker who has to make a finding on a
fact’s existence would begin with an initial impression, or predisposi-
tion, and then would process additional pieces of information.  Each
of these, including the initial impression, would receive a scale value,
which is a measure of the likelihood of the fact’s existence.  Each
would also receive a weighting factor, which is a measure of evidential
importance that takes into account both directness and credibility.
The decision-maker would then combine these into a weighted aver-
age that determines the fact’s existence.

Even if some such theory reflects reality, it is clear that humans
do not naturally use perfectly “rational” techniques, but instead use
less accurate “intuitive” techniques.38  The employed techniques are
also subject to all sorts of heuristics and other biases.39  Any account
would further have to incorporate the metaphorically dual processes,
automatic and systematic, of cognitive processing.40

36 See David A. Schum, A Science of Evidence: Contributions from Law and Probability,
8 LAW PROBABILITY & RISK 197, 203–04 (2009) (crediting DAVID OLDROYD, THE ARCH

OF KNOWLEDGE (1986), for this image).
37 See Martin F. Kaplan, Cognitive Processes in the Individual Juror, in THE PSYCHOL-

OGY OF THE COURTROOM 197 (Norbert L. Kerr & Robert M. Bray eds., 1982); see also
Jennifer Groscup & Jennifer Tallon, Theoretical Models of Jury Decision–Making, in JURY

PSYCHOLOGY 41 (Joel D. Lieberman & Daniel A. Krauss eds., 2009) (sketching some
contesting models); Nancy Pennington & Reid Hastie, Juror Decision–Making Models:
The Generalization Gap, 89 PSYCHOL. BULL. 246 (1981) (evaluating various models).
For treatment of the story model, see infra text accompanying note 116. R

38 See generally DANIEL KAHNEMAN, THINKING, FAST AND SLOW (2011).  For treat-
ment of humans’ bounded rationality, see infra text accompanying note 84. R

39 See J. Alexander Tanford & Sarah Tanford, Better Trials Through Science: A
Defense of Psychologist–Lawyer Collaboration, 66 N.C. L. REV. 741, 748–59 (1988).

40 See Anna Ronkainen, Dual–Process Cognition and Legal Reasoning, in ARGUMENTA-

TION 2011, at 1, 1 (Michal Araszkiewicz et al. eds., 2011), available at http://ssrn.com/
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In actuality, then, the fact-finders’ performance of the cognitive
process would usually be approximate and non-quantitative.  The fact-
finders would take a stab at assessing all the related evidence, perhaps
by some method similar to information integration.  Then, any judged
likelihood might find expression in terms of a limited set of broad
categories such as more likely than not, high probability, and almost
certainty.

2. Probability Theories

A partly separate question from what fact-finders can do, actually
do, or think they are doing, on the one hand, is what the law should
or does tell the fact-finder to do, on the other hand.  Surprisingly,
even mathematicians cannot agree on how a fact-finder should per-
form the task of processing evidence, and so cannot unanimously
guide the law on an ideal path to take.41  The most popular candidate
for rigorously evaluating and combining related evidence is the Baye-
sian approach, utilizing subjective probabilities.

Subjective probability theory allows us to speak of the likelihood
of a single event.  A subjective probability measures an individual’s
personal judgment about how likely a particular event is to occur or
has occurred.  The theory is

based on the notion that it makes sense to ask someone what he
would do if offered a reward for guessing correctly whether any pro-
position, designated X, is true or false.  If he guesses that X is true
under these circumstances, we say that for him the subjective
probability of X, written P(X), exceeds fifty percent.  Symbolically,
P(X) > .5.  If he would be equally satisfied guessing either way, then
we say that, for him, P(X) = .5.42

Upon expanding the measure into a complete scale of probabilities
from 0 to 1 and postulating the usual logical operators, subjective
probabilities follow most of the rules of frequentist probabilities.43

abstract=2004336 (“The dual-process framework is a set of theories on human cogni-
tion in which cognition is seen as consisting of (at least) two substantially different yet
interdependent systems: the older, faster, partly unconscious and automatic System 1
and the newer, slower, fully conscious and considered System 2.”).

41 See Peter Tillers, Introduction: A Personal Perspective on “Artificial Intelligence and
Judicial Proof,” 22 CARDOZO L. REV. 1365 (2001) (discussing different mathematical
approaches to judicial proof).

42 Tribe, supra note 2, at 1347 (citing the innovative work of LEONARD J. SAVAGE, R
FOUNDATIONS OF STATISTICS (1954)).

43 See id. at 1347–48. Compare id. at 1348 n.63 (accepting the product rule
because he is assuming bivalence), with infra text accompanying note 110 (rejecting R
the product rule for subjective probabilities in fact-finding).
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Bayes’ theorem links the perceived probability before and after
observing evidence.  The starting point is P(A), the prior probability
of A.  Then the posterior probability of A, after accounting for evi-
dence B, is P(A|B); this is a so-called conditional probability, which
may be read as the probability that A will occur if B is known certainly
to have occurred.  P(A|B) calculates to be P(A) multiplied by the sup-
port B provides for A, a support that Thomas Bayes (or really Pierre
Simon Laplace) equated to P(B|A) / P(B).

Despite its internal mathematical soundness, and despite the
many insights it generates for law, many observers from various disci-
plines have serious doubts about whether Bayes’ theorem should be
seen to play a broad role in legal fact-finding.44  First, its prior
probability comes out of thin air, as some sort of subjective guess.  The
more objective supposition of 50%, on the thought that the fact is
either true or false, comports neither with reality nor with where the
law tells the fact-finder to begin.45  Second, Bayes’ theorem leaves no
place for indeterminacy, thus painting the world as black and white
even though most of the world appears in shades of gray.  It accord-
ingly does not handle well the situation of conflicting or scarce infor-
mation, using a fudge factor to account for the state of the evidence.46

Third, its mathematical approach is not realistic, of course.  It does
not conform to the way intuitive humans arrive at prior probabilities
or the way they combine them with new evidence to produce posterior
probabilities.47

3. Zadeh’s Fuzzy Logic

a. Basics

Fuzzy logic envisages degrees of membership in a so-called fuzzy
set, with membership valued anywhere between 0 and 1.  That is, x’s
membership in a fuzzy set H of the universe X may take values
throughout the whole interval [0,1], rather than just the two values of

44 See, e.g., Pennington & Hastie, supra note 37, at 262–68; Shafer, supra note 25, R
at 809–16. Compare Paul Bergman & Al Moore, Mistrial by Likelihood Ratio: Bayesian
Analysis Meets the F-Word, 13 CARDOZO L. REV. 589, 590 (1991) (attacking), with D.H.
Kaye, Commentary, Credal Probability, 13 CARDOZO L. REV. 647 (1991) (defending).

45 See Leonard R. Jaffee, Of Probativity and Probability: Statistics, Scientific Evidence,
and the Calculus of Chance at Trial, 46 U. PITT. L. REV. 925, 980–85 (1985).

46 See Lea Brilmayer & Lewis Kornhauser, Review: Quantitative Methods and Legal
Decisions, 46 U. CHI. L. REV. 116, 135–48 (1978).

47 Compare SAMUEL KOTZ & DONNA F. STROUP, EDUCATED GUESSING (1983) (dis-
cussing the sophisticated techniques of theory), with Craig R. Callen, Notes on a Grand
Illusion: Some Limits on the Use of Bayesian Theory in Evidence Law, 57 IND. L.J. 1 (1982)
(discussing the simplified practices of law).
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0 and 1.  This range allows a more complete and accurate expression
of membership, when membership is imprecise.

Take as an example the set A of men from five to seven feet tall.
This would be a so-called crisp set.  Membership of element x in set A,
represented by cA(x), is not vague.  The values of cA can thus be only
either 0 or 1, at least if we ignore complications at the nanoscale level.

Contrast the set H of men somewhere near six feet.  It is a fuzzy
set.  Membership of element x in H, represented by mH(x), is impre-
cise.  The values of mH may start at 0 for a tiny person, but they soon
increase by some function to a value of 1 at precisely six feet, and then
start decreasing.  The membership function could be linear, but it can
take on any shape as appropriate.

So Tom might be completely in set A but have a degree of mem-
bership in H of .5.  The following figure represents these two sets, with
(a) representing the crisp set of men from five to seven feet tall and
(b) being one representation of the fuzzy set of men somewhere near
six feet tall:48

µHχA

50

1

6 7

(a)

50

1

6 7

(b)

b. Linguistics

Important to note is the role of qualifying language in the prior
example as a means of expressing membership. Evaluative linguistic
expressions are words like small, medium, and big; another example is
about, roughly, or near, when used in contrast to not-at-all or really.
These words may not be a large part of our natural language.  Yet,
they are an important part of that language.  They do a lot of work.
People use them all the time to evaluate a thing or situation and to
communicate their evaluation.  People thereafter use them for classifi-
cation, decision-making, and other tasks.

People employ linguistic hedges to modify their evaluations fur-
ther.  Words such as very or extremely, and fairly or almost, are exam-
ples.  These words allow people to create a gradated scale for their

48 The figure comes from Ross & Parkinson, supra note 17, at 30. R
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evaluations.  The following figure represents a scale for size, ranging
from vL as the left bound of values that are very small, through
medium, and on to vR as the right bound of values that are very big:49

1

0

VS VB

SM

vL vR

ME BI

This scale actually consists of three overlapping fuzzy subsets
based on the evaluative linguistic expressions of small, medium, and
big.  Linguistic hedges subdivide the three subsets as suggested by the
four smaller triangles at the top, perhaps equating to very small,
almost medium, almost big, and very big.  The result is seven grada-
tions of meaning.

Obviously, these seven categories and labels are imprecise.  But
they are supposed to be, and they work quite well in real life.  Fuzzy
logic better comports to our view of the real world than does classical
bivalent logic with its excluded middle.  In the real world, boundaries
of things often appear indistinct, thus making important or even
essential the human ability to process fuzzy information.

Some research suggests that such verbal categories work better
than numerical translations.50  Other research indicates that they
work best as a matter of natural language if the categories are equally

49 The figure comes from Vilém Novák, Modeling with Words, SCHOLARPEDIA,
http://www.scholarpedia.org/article/Modeling_with_words (last visited Jan. 15,
2013).

50 See Alf C. Zimmer, Verbal vs. Numerical Processing of Subjective Probabilities, in
DECISION MAKING UNDER UNCERTAINTY 159, 180 (Roland W. Scholz ed., 1983).  On
the one hand, considerable empirical work on the legal standards of proof suggests
that fact-finders show considerable confusion in translating the standards into numer-
ical probabilities.  The results argue for a verbal approach to standards of proof. See
Clermont, supra note 20, at 1144–50 (recounting the empirical studies that show fact- R
finders’ difficulties in comprehending standards of proof).  On the other hand, not
only is such translation unnecessary, but also it might be a wrongheaded step if fuzzy
logic is really in use.  The prior empirical work might therefore need redoing. See
Mandeep K. Dhami, On Measuring Quantitative Interpretations of Reasonable Doubt, 14 J.
EXPERIMENTAL PSYCHOL.: APPLIED 353, 362 (2008) (developing a new technique for
empirical work on standards of proof, called the membership function and based on
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sized and shaped.51  It might even be feasible to construct and employ
an ordinally ranked vocabulary of likelihood that improves effective
interpersonal communication.52

c. Evaluating and Combining Evidence

Fuzzy logic has formal rules for combining likelihoods,53 once
evaluated by one method or another.54  Moreover, to jump ahead to
belief functions, the theoretical work thereon consists mainly of devel-
oping tools for combining pieces of evidence to determine a likeli-
hood.  In particular, its very prominent Dempster-Shafer rule governs
the task.55  That rule is very complicated because it abstractly
addresses the problem in the most general terms possible (Bayes’ the-

fuzzy logic, and highlighting “the need to reevaluate the reliability and validity of past
research findings on quantifying” standards of proof).

51 See Zimmer, supra note 50, at 166. R
52 See Mandeep K. Dhami & Thomas S. Wallsten, Interpersonal Comparison of Subjec-

tive Probabilities: Toward Translating Linguistic Probabilities, 33 MEMORY & COGNITION

1057 (2005).
53 See Petr Hajek, Fuzzy Logic, in THE STANFORD ENCYCLOPEDIA OF PHILOSOPHY

(Edward N. Zalta ed., 2010), available at http://plato.stanford.edu/archives/fall
2010/entries/logic-fuzzy (discussing the varying versions of fuzzy logic).

54 Cf. Brulé, supra note 12 (“The skeptical observer will note that the assignment R
of values to linguistic meanings (such as 0.90 to ‘very’) and vice versa, is a most impre-
cise operation.  Fuzzy systems, it should be noted, lay no claim to establishing a formal
procedure for assignments at this level; in fact, the only argument for a particular
assignment is its intuitive strength.  What fuzzy logic does propose is to establish a
formal method of operating on these values, once the primitives have been
established.”).

55 See SHAFER, supra note 23, at 6, 57–67 (using orthogonal sums); Jeffrey A. Bar- R
nett, Computational Methods for A Mathematical Theory of Evidence, in CLASSIC WORKS

OF THE DEMPSTER–SHAFER THEORY OF BELIEF FUNCTIONS 197, 198–204 (Ronald R.
Yager & Liping Liu eds., 2008).  By the Dempster-Shafer rule,

we construct a belief function to represent the new evidence and combine it
with our “prior” belief function—i.e., with the belief function that represents
our prior opinions.  This method deals symmetrically with the new evidence
and the old evidence on which our prior opinions are based: both bodies of
evidence are represented by belief functions, and the result of the combina-
tion does not depend on which evidence is the old and which is the new.

SHAFER, supra note 23, at 25. R
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orem turns out to be a special case of that approach).56  The rule is
also quite contested, generating many competitors.57

In the end, these formal approaches are clearly not realistic rep-
resentations of human cognition.58  Humans do not naturally use
rational techniques like the Dempster-Shafer rule any more than they
calculate Bayes’ theorem; they instead use intuitive techniques in a
non-quantitative and approximate fashion.  Consequently, the law has
generally left the combination of related evidence evaluations to its
fact-finders’ instinctive treatment.

Fortunately, fuzzy logic is not dogmatic on the method used to
evaluate or combine pieces of evidence that reinforce or undermine
each other.  It is compatible with the fact-finders’ combining all the
related evidence by any means.  Just one possibility would be informa-
tion integration’s weighted average, described above.59  In fact, a
weighted-average approach commonly appears in the decision-making
process of today’s fuzzy computer programs.60

My interest in this Article is not so much the initial eyeing of evi-
dence, but rather the subsequent steps that build to a standard of
proof’s application.  For my purposes, the new logic mainly illumi-
nates a way for people to express their views of the evidence, prior to
handling those views according to established rules of reasoning such
as conjunction.  That is, fuzzy logic in this broad sense gives a new and
effective way to explore humans’ expression of their assessment.61

And it then opens the door to subjecting those expressions to so-
called approximate reasoning, which despite its name can be quite
rigorously performed.62

56 For a comparison of Bayesian probability judgments and belief functions, see
Glenn Shafer & Amos Tversky, Languages and Designs for Probability Judgment, in CLAS-

SIC WORKS OF THE DEMPSTER–SHAFER THEORY OF BELIEF FUNCTIONS, supra note 55, at R
345.

57 See Kari Sentz & Scott Ferson, Combination of Evidence in Dempster–Shafer
Theory 17–27 (Apr. 2002) (unpublished manuscript), available at http://www.sandia.
gov/epistemic/Reports/SAND2002-0835.pdf (describing thirteen alternatives).

58 See Schum, supra note 5, at 852–53 (recounting the lack of empirical support). R

59 See supra text accompanying note 37. R

60 See KOSKO, supra note 10, at 176–80 (describing its use in fuzzy computer R
systems).

61 See Novák, supra note 49 (“Mathematical fuzzy logic has two branches: fuzzy R
logic in narrow sense (FLn) and fuzzy logic in broader sense (FLb).  FLn is a formal fuzzy
logic which is a special many-valued logic generalizing classical mathematical
logic. . . .  FLb is an extension of FLn which aims at developing a formal theory of human
reasoning.”).

62 See Ronald R. Yager, New Paradigms for Reasoning with Uncertain Information, 13
CARDOZO L. REV. 1005, 1017–24 (1991) (explaining approximate reasoning).
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I therefore will not pursue fuzzy logic’s detailed rules, which con-
stitute the new logic in a narrow sense, nor will I weigh the disputes
over the rules’ details.  Naturally enough, the law built on the intui-
tion that partial truths exist, but it never adopted all the formal com-
plications that logicians have refined since 1965.

d. Fuzziness versus Probability as a Means of Expressing
Assessment

I propose considering the broad version of fuzzy logic as the legal
model for human expression of uncertainty, in preference to assum-
ing a probability-based bivalent view.  The significance of adopting it
for this purpose will become evident upon distinguishing a fuzzy state-
ment from a traditionally probabilistic one.63

A few anticipatory words of qualification are in order.  I am not
an anti-probabilist.  I am not arguing against a probabilistic approach
if “probabilistic” carries its capacious sense of accepting uncertainty
and mathematically accounting for it.  I am arguing against traditional
probability theory when appended to a bivalent view of the world.
What I am proposing is a nontraditional means for expressing
uncertainty.

Describing different uncertainties—Both a traditionally probabilistic
description and a fuzzy one can be accurate statements, but they
describe different states.  The key distinction is that probability here
depends on the existence of a crisply bivalent world.  Fuzzy logic
accepts an imprecisely multivalent world.

On the one hand, fuzziness is a way, for example, to describe
event imprecision.  It measures what has occurred—actually, the degree
to which the event occurred—which can be vague.  On the other
hand, probability is a way to describe event occurrence.  It can measure
the chance that the event will occur or not.

The probability of whether an event occurs in a bivalent world is
normally random, as contrasted with the nonrandom uncertainty of
vagueness that fuzziness additionally measures.  Probability expresses
the chance of whether something will occur, all the while knowing it
will occur or not on an all-or-nothing basis.  It is a mathematical sup-
plement to bivalent logic, used to account for that one kind of uncer-
tainty.  Fuzziness expresses vagueness as a degree of membership.  It

63 See generally Mark Colyvan, Is Probability the Only Coherent Approach to Uncer-
tainty?, 28 RISK ANALYSIS 645 (2008) (arguing that probability theory’s dealing with
uncertainty stands on controversial premises and suggesting examples of non-proba-
bilistic uncertainty); Bart Kosko, Fuzziness vs. Probability, 17 INT’L J. GEN. SYS. 211
(1990) (discussing and contrasting fuzziness and probability).
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builds its inclusive measure of uncertainty right into the basics of the
multivalent logic system.

Probability conveys what we know, when in possession of only par-
tial knowledge, about whether an event will occur.  With more infor-
mation, the uncertainty in the probability will dissipate, and if the
event’s occurrence becomes known the probability itself will morph
into a value of 1 or 0.  By contrast, fuzziness conveys all the informa-
tion we have about an event, which most often ends up expressed as a
partial truth.  More information will increase the fuzziness of set mem-
bership, because any crisp lines become harder to maintain.  That is,
as one acquires more information about the world, one sees a greater
need for measuring fuzziness in lieu of bivalent categorization.

Probabilism and fuzziness can describe much more than events.
Maybe another example would help.  If a probabilist says, “There is a
30% chance that Tom is tall,” the speaker supposes that Tom is either
tall or not tall, and given imperfect evidence he thinks that it is only
30% likely that Tom would end up in the tall category upon accurate
measurement.  But when a fuzzy logician says, “Tom’s degree of mem-
bership within the set of tall men is .30,” he means that Tom is not
very tall at all.  The difference is real and considerable.  It derives
from the fact that the probabilist is assuming bivalence with an
excluded middle, so that one is tall or not, while the fuzzy logician is
speaking of a world where one can be more or less tall.

Choosing between models—Which model to use, probability or fuzzy
logic, depends on what one is trying to describe.  If the fact in ques-
tion is or is assumed to be nonvague, and thus readily distinguishable
from its opposite, and its occurrence is subject only to random uncer-
tainty, then probability is appropriate.  For a probability example: will
I pick a black ball from the urn?  However, if the fact is vague, and
most facts in the world are vague, fuzzy logic is the way to go.  For a
fuzzy example: how black is this grayish ball?

The choice between probabilism and fuzziness is important.  The
kind of statement one can make will depend on the choice made.
“You paint one picture of the world if you say there is a 50% chance
that an apple sits in the refrigerator.  You paint a different picture if
you say half an apple sits in the refrigerator.”64  The two models are
not fully interchangeable, even though people tend to treat them so.
People use probability loosely for any sort of uncertainty.  They use it
to express fuzziness.  But it is inappropriate for that purpose.

I am coming to the choice that the law has made.  But at this
point, it is natural for the reader to jump to the conclusion that the

64 KOSKO, supra note 10, at 15. R
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law in its fact-finding usually wants to know if an apple is in the refrig-
erator, not whether it is half eaten.  The court wants to know if Tom
was or was not the alleged perpetrator.  Just to slow you up, however, I
point out that in legal fact-finding no one is ever going to be able to
look inside the refrigerator.  Also, much more significantly, I can pose
another example that makes it much less clear which sort of statement
the law seeks.  Think of a somewhat sloppily drawn circle: is it more
appropriate to say (i) there is a 90% probability that it is a perfect
circle or (ii) it has a .90 membership in the set of circles?65  An anal-
ogy to the circle would be the law’s trying to determine fault, when
degrees of fault are the reality.  But also analogous would be causa-
tion, consent, coercion, good faith, intent, and a host of other legal
issues.  After all, remember that Bertrand Russell saw all of natural
language as vague.66  Many, many legal issues are fuzzy concepts, in
that they draw indistinct lines, most often unavoidably—and many of
these fuzzy concepts are subjects of proof through litigation.67

So, the important choice between probabilism and fuzziness is
not an easy one.  Bearing on that choice, however, consider three
advantages of fuzzy logic.

First, it is more accurate than probability whenever one
encounters nonrandom uncertainty, such as vagueness.  It picks up
the extra information about vagueness, extra information expressed
in natural language but lost upon classification into a crisp set.  Recall
that fuzziness includes the imprecision of an event, while probability
describes only the chance of the event.  The precision of probability
thus turns out to be a vice rather than a virtue.  Probability has the
advantage of bivalent simplicity, but it will often be misleading in the
real world of fuzziness:

The question is not whether the glass is half empty or half full.  If we
had to say all or none, the question is, is the glass full or empty.

65 See id. at 44–46 (using this image).
66 See supra note 8. R
67 See ENDICOTT, supra note 10 (arguing that vagueness plays a significant role in R

law, a role not owing solely to the vagueness of language); LEO KATZ, WHY THE LAW IS

SO PERVERSE 139–56 (2011) (cataloging examples of vague concepts); Andrei
Marmor, Varieties of Vagueness in the Law (USC Legal Studies Research Paper No. 12-8,
Apr. 2012), available at http://ssrn.com/abstract=2039076 (articulating the different
types of vagueness in law, beyond those entailing only a simple sorites sequence);
Scott Soames, Vagueness in the Law, in THE ROUTLEDGE COMPANION TO PHILOSOPHY OF

LAW 95 (Andrei Marmor ed., 2012) (bridging between philosophical logic and legal
philosophy).  Consequently, legal scholars are increasingly using fuzzy logic. See
Michael T. Nguyen, Note, The Myth of “Lucky” Patent Verdicts: Improving the Quality of
Appellate Review by Incorporating Fuzzy Logic in Jury Verdicts, 59 HASTINGS L.J. 1257, 1261
n.28 (2008) (listing examples).
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[Either answer is a half-truth.] . . . That is the real state of the world.
We don’t mean that there is a 50% probability that the glass is full.
We mean half a glass.  If for some cultural reason we limit what we
say to the two bivalent options of all or none, true or false, yes or no,
then we pay the price . . . .68

Second, the precision of probability becomes particularly trouble-
some when trying to gauge a probability resting on imperfect evidence
that leaves a lot indeterminate.  Fuzzy expression can better handle
incomplete, inconclusive, ambiguous, dissonant, and untrustworthy
evidence.69

Third, another advantage of fuzzy logic is that it is the more inclu-
sive system.  Many-valued logic includes two-valued logic.  Being a
form of many-valued logic, fuzzy logic neither requires nor forbids
that anything be of an on-or-off nature, true or false, completely
inside a set or outside that set.  The two-valued logic of probability
demands the existence of sets with strict membership classifications
exclusively, an in-or-out characteristic symbolized respectively by val-
ues of either 1 or 0.  But those crisp sets are a kind among fuzzy sets.

68 KOSKO, supra note 10, at 25–26; see id. at 33 (“At the midpoint you cannot tell a R
thing from its opposite, just as you cannot tell a half-empty glass from a half-full
glass.”).

69 See generally MACIEJ WYGRALAK, VAGUELY DEFINED OBJECTS (1996).  The degree
of membership in a fuzzy set can itself be imprecise or otherwise uncertain, making
what is called an ultra-fuzzy set or a type-2 fuzzy set, which operates as an initial step
toward type-n fuzzy sets and operates in contrast to the type-1 fuzzy sets discussed up
to here. See Mark Jablonowski, An Ultra–fuzzy Model of Aggregate Growth in Catastrophic
Risk Potentials, 2008 ANN. MEETING N. AM. FUZZY INFO. PROCESSING SOC’Y (May 19–22,
2008) (modeling using ultra-fuzzy sets).  Basically, representation of the uncertainty
in the degree of membership comes out in a third dimension from each degree of
membership represented in two dimensions. See Jerry M. Mendel, Type–2 Fuzzy Sets
and Systems: An Overview, IEEE COMPUTATIONAL INTELLIGENCE MAG., Feb. 2007, at 20,
available at http://sipi.usc.edu/~mendel/publications/MENDEL%20CI%20Maga-
zine%202007.pdf.  The third dimension can be projected back into the two dimen-
sions to create the footprint of uncertainty, or FOU, which I mention just to suggest
how cool the terminology in this field gets.

Of course, the logical operators become much more complicated to account for
this third dimension. See Nilesh N. Karnik & Jerry M. Mendel, Operations on Type–2
Fuzzy Sets, 122 FUZZY SETS & SYS. 327 (2001); see also Jerry M. Mendel, Type–2 Fuzzy Sets
and Systems: How to Learn About Them, IEEE SMC ENEWSL. (Sys., Man & Cybernetics
Soc’y, New York, N.Y.), June 2009, available at http://sipi.usc.edu/~mendel/publica-
tions/MendelSMCeNewsletter6-09.pdf (discussing existing work on ultra-fuzzy sets).
However, here there is no reason to explore the sophistication of logical operators for
ultra-fuzzy sets, because the law seems to treat all measures of truth simply as type-1
fuzzy sets and instead roughly accounts for other second-order-like uncertainty
through belief functions.
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Bivalence is a special case of multivalent logic.  The world of black or
white is a special, extreme case of the world shaded in grays.

In many situations, a single fact is subject both to vagueness and
to occurrence uncertainty.  Although probability theory can say little
on how to reason about things that are not completely true or false,
fuzzy logic can handle the more mixed and complex situations.  For
an example of what might be called “normative” uncertainty,70 it
might be that there was a .70 blameworthy act.  Or while the act was
completely blameworthy, there was a 70% chance that it occurred,
creating “factual” uncertainty.  But what about a 70% chance of a .70
degree of fault?  Then, these two kinds of uncertainty need to be
integrated.

Moreover, a decision may rest on a number of facts, some of
which demonstrate only occurrence uncertainty, while others show
some vagueness as well.  The need in decision-making to combine
these fact-findings counsels the use of one logic system, because “we
cannot coherently countenance two different kinds of degree of
belief.”71  To combine the facts, a common currency is necessary.

The inclusiveness of fuzzy logic suggests its use for each fact and
for combining evaluations of different facts.  Indeed, it can effortlessly
express even a traditional probability as membership in a set; that is,
probability is the degree to which the imagined universe of all tries
would belong to the set of successful tries.72  This compatibility is
essential.  It allows easy combination of a randomly uncertain set with
an imprecise set, in accordance with fuzzy logical operators.73

In sum, fuzzy logic provides the needed common currency.  It
can handle all kinds of facts, and can do so much better than
probability.  The legal reader cannot dodge my argument by conclud-
ing that fuzziness reaches, if any, only some kinds of facts.  Instead,
fuzziness handles facts exhibiting random uncertainty as well as those
showing vagueness, facts embodying both factual uncertainty and nor-

70 See Ariel Porat & Eric A. Posner, Aggregation and Law, 122 YALE L.J. 2, 2 (2012)
(coining the terms “normative aggregation” and “factual aggregation”).

71 Nicholas J.J. Smith, Degree of Belief Is Expected Truth Value, in CUTS AND CLOUDS

491, 491 (Richard Dietz & Sebastiano Moruzzi eds., 2010) (cataloging the difficulties
that would come from entertaining both probabilities and degrees of belief, when the
two underlying logic systems employ different operators).

72 See KOSKO, supra note 10, at 55–64 (calling this set “the whole in the part”). R

73 See infra Part II.A. (explaining the MIN operator).  This approach would also
handle the uncertainty of whether an imprecise event occurred at all. See Charles M.
Yablon, On the Allocation of Burdens of Proof in Corporate Law: An Essay on Fairness and
Fuzzy Sets, 13 CARDOZO L. REV. 497 (1991) (treating a transaction’s fairness as a fuzzy
set, while trying at the same time to account for subjective probability of occurrence).
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mative uncertainty, and factual events and legal constructs.  Law could
choose fuzziness as its sole mode of measurement.

e. The Law’s Choice

My concern in this Article is primarily to unearth what the law
actually tells its fact-finders to do.  Even if in the end it remains up in
the air as to which model, fuzzy logic or probability, would be the
superior vehicle for the legal proof process, my real interest here is in
which model the law actually chose.  This is a descriptive rather than
prescriptive question: which model better expresses the law’s scale of
likelihood of truth, which better explains the legal treatment of the
well-known conjunction paradox, and which better effectuates the
burdens of production and persuasion?  On the descriptive question, I
believe and shall try to demonstrate that the law embraces fuzzy logic.

In its instructions to fact-finders, the law does not explicitly distin-
guish between probabilism and fuzziness.  It instead speaks in terms of
a common currency, mixing the questions of whether and how much
an event occurred.  Whether the issue is occurrence or blameworthi-
ness of an act, the law deals only in degrees of truth.  Asking for a
single measure of uncertainty makes sense only in fuzzy logic, because
it accounts for the various kinds of uncertainty.  Relying instead on
the mathematical supplement of the probability calculus would be so
awkward and incomplete as to be nonsensible.  I therefore submit that
the law treats all measures of truth simply as fuzzy sets.

I would further submit, if pressed, that the reason for the law’s
choosing to speak in terms of degrees of membership is that they
behave more appropriately than probabilities in a world filled with
various kinds of uncertainty.74

Imagine that the law is trying to determine if Tom was at fault.  A
number of features of this issue of fault indicate that the actual and
better approach for law is fuzzy logic.  First, we will never know the
answer as a 1 or a 0.  Therefore, we should not be worrying too much
about specifying the chance of a 1 turning up.  Second, ours is not a
crisp world, so the law is often not interested in establishing that the
truth value of an element is a 1 or a 0.  Instead, it wants to ascertain
whether the element has a sufficient truth value for the purpose at
hand.  Third, any conclusion based on evidence is necessarily uncer-
tain for five reasons: “Our evidence is never complete, is usually incon-
clusive, is frequently ambiguous, is commonly dissonant to some

74 See Shapira, supra note 24, at 1614–15 (arguing for the superiority of degrees R
of belief).



\\jciprod01\productn\N\NDL\88-3\NDL301.txt unknown Seq: 26  4-APR-13 15:47

1086 notre dame law review [vol. 88:3

degree and comes to us from sources having imperfect credibility.”75

Fourth, the fact-finder might entertain thoughts of both randomness
and vagueness, that is, both a sense that Tom was .70 likely to have
been completely at fault and also that Tom was at fault to a .70 degree.
Fifth, given that some issues in a case might demand the more inclu-
sive measure of imprecision, logical coherency requires that the same
type of measure apply to every issue.

I am not calling for a major shift in conceiving the standards of
proof.  After all, fuzzy logic is not antithetical to classical logic.  All I
am saying is that the law appreciates that more kinds of uncertainty
than that of event occurrence are at play.  The law therefore uses a
logic appropriate to the task.  Fuzzy logic moves its measure of uncer-
tainties into the basics of the system, rather than leaving their treat-
ment to some sort of afterthought.  That non-radical move does not
call for an overhaul of legal language or imagery, and it even makes
many legal consequences easier to comprehend.

Indeed, I am not even saying that if we recognize the role of mul-
tivalence, we need to abandon the probability idiom.  It can be quite
expressive in the realm of standards of proof.  Nonetheless, when
plunging to the depths, we need always to remember that the legal
foundation is ultimately fuzzy in nature.  Here is a last clever image to
make the point as to what the law deals in:

Suppose you had been in the desert for a week without drink and
you came upon two bottles marked K and M [and marked, respec-
tively, with a .91 membership in the fuzzy set of potable liquids and
a .91 probability of being a potable liquid].  Confronted with this
pair of bottles, and given that you must drink from the one that you
chose, which would you choose to drink from?  Most people, when
presented with this experiment, immediately see that while K could
contain, say, swamp water, it would not (discounting the possibility
of a Machiavellian fuzzy modeler) contain liquids such as hydro-
chloric acid.  That is, membership of 0.91 means that the contents
of K are fairly similar to perfectly potable liquids, e.g. pure water.
On the other hand, the probability that M is potable “equals 0.91”
means that over a long run of experiments, the contents of M are
expected to be potable in about 91% of the trials.  In the other 9%
the contents will be deadly—about 1 chance in 10.  Thus, most sub-
jects will opt for a chance to drink swamp water.76

75 Schum, supra note 36, at 216 (internal quotation marks omitted). R
76 Bogdan R. Kosanovic, Fuzziness and Probability 2–3 (Feb. 8, 1995) (unpub-

lished manuscript) (emphasis omitted), available at http://www.neuronet.pitt.edu/
~bogdan/research/fuzzy/fvsp/fvsp.html.  In early 2012 some congressional offices
received threatening letters containing a suspicious powder.  The letter promised
additional mailings and said there was a “‘10 percent chance that you have just been
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B. Legal Application: Gradated Likelihood

The way to apply fuzzy logic to fact-finding in the legal system is
to envisage the fuzzy set of true facts and ask for x, as a particular
element of a claim or defense, what is its degree of membership in
that set.  Recall that membership represents how much a variable is in
the set.  The membership here will be partial.  It will tell how true the
fact-finder finds the element to be.  One could express m(x) as
truth(x).  Membership thereby creates degrees of truth.77

While this membership will turn on likelihood of truth in a sense,
it is in a sense different from the classical understanding of the fact-
finder’s subjective probability that the element is true.  Such subjec-
tive probability crisply deals with the probability of x being in actuality
1, while fuzzy logic vaguely deals with a degree of truth.  The degrees
of truth range from 0 to 1 in fuzzy theory, but in practice they find
expression most often as words, or evaluative linguistic variables that
use linguistic hedges to cover all the intervals of partial truth between
completely false and completely true.

Fuzzy logic’s schema well describes the law’s scale of likelihood
that I have previously documented.78  For a significant example, the
law today limits its choice to no more than three standards of proof—
preponderance, clearly convincing, and beyond a reasonable doubt—
from among the infinite range of probabilities stretching from slightly
probable to virtual certainty; the law did not always recognize this limi-
tation, but with time the law has acknowledged that the conceivable
spectrum of standards coalesced irresistibly into three.79  For another
example, the harmless-error doctrine frequently invokes one of three
low possibilities of an error’s effect on outcome.80  More generally, the
law’s standards of decision invoke a coarsely gradated scale of likeli-

exposed to a lethal pathogen.’”  Andrew Taylor, Congressional Offices Receive Mailed
Threats, YAHOO! NEWS (Feb. 23, 2012, 1:47 AM), http://news.yahoo.com/congres-
sional-offices-receive-mailed-threats-220538717.html.

77 See Richard Bellman & Magnus Giertz, On the Analytic Formalism of the Theory of
Fuzzy Sets, 5 INFO. SCI. 149, 151–52 (1973) (showing the equivalence between fuzzy sets
and fuzzy statements).

78 See Clermont, supra note 20, at 1116–34 (drawing examples from such areas as R
standard of proof, standard of review, harmless error, trial motions, police actions,
and administrative law).

79 See J. P. McBaine, Burden of Proof: Degrees of Belief, 32 CALIF. L. REV. 242 (1944)
(arguing that, for standards of proof, only three levels of strength exist; using
“degrees of belief” in Bentham’s sense of strength of belief); C.M.A. McCauliff, Bur-
dens of Proof: Degrees of Belief, Quanta of Evidence, or Constitutional Guarantees?, 35 VAND.
L. REV. 1293 (1982).

80 See Clermont, supra note 20, at 1121–23. R
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hood stretching across the broader spectrum from the slightest possi-
bility up to virtual certainty.

The reason for this coarse gradation, I argued, lay in the cogni-
tive psychology literature.  Cognitive limitations leave humans able
only weakly to judge likelihood on any sort of scale.  Studies of
humans’ weak absolute judgment,81 restricted short-term memory,
and use of biased heuristics all supported the limited capability of
humankind.  Those studies suggested that a step-like scale of intervals
accords with how humans naturally process such information: judged
likelihood customarily finds expression in terms of a very small set of
broad verbal categories.  Today, in all the probability and logic theo-
ries, there seems to be an emerging sense of the need to confront the
limited precision of humans in gradating their beliefs.82  It might
therefore be more psychologically feasible for the law to ask fact-find-
ers for an approximate degree of truth than for their precise view of
probability.83  Perhaps the law has already optimized by intuitively
conforming to the coarsely gradated scale of likelihood already in
people’s customary use:

The law usually does, realistically can, and optimally should rec-
ognize only seven categories of uncertainty in its standards of deci-
sion: (1) slightest possibility, (2) reasonable possibility, (3)
substantial possibility, (4) equipoise, (5) probability, (6) high
probability, and (7) almost certainty.  First, this essay’s description
of seemingly diverse legal doctrines demonstrated that standards of
decision tend to fall, often in groups of three, into the seven cus-
tomary categories.  Second, a review of cognitive psychology
revealed humans to be “boundedly rational.”  Third, combining the
observation with the science suggested that the systematic structure
of the standards reflects the law’s wise reconciliation with those cog-
nitive limitations.84

Now, I espouse expressing that conclusion in the terms of fuzzy
logic. I propose viewing the seven gradations as degrees of truth in

81 Absolute judgment involves reference to a remembered scale.  Although not
entirely distinct, relative judgment concerns the considerably greater capacity of peo-
ple to distinguish between two or more different stimuli that they can compare
directly. See WILLIAM N. DEMBER & JOEL S. WARM, PSYCHOLOGY OF PERCEPTION 113,
116–17 (2d ed. 1979).

82 See Terrence L. Fine, [The Axioms of Subjective Probability]: Comment, 1 STAT. SCI.
352, 353 (1986).

83 See Clermont, supra note 20, at 1139–44 (recounting empirical evidence); R
Yanlong Sun et al., Probabilistic Judgment on a Coarser Scale, 9 COGNITIVE SYS. RES. 161
(2008) (recounting more recent, consistent results); supra text accompanying note
50. R

84 Clermont, supra note 20, at 1156. R



\\jciprod01\productn\N\NDL\88-3\NDL301.txt unknown Seq: 29  4-APR-13 15:47

2013] the  killer  logic  beneath  the  standards  of  proof 1089

this way (although I would redraw the separate gradations to be
equally sized and shaped):

1

0

VS VB

SM

vL vR

ME BI

Reasonable Possibility Equipoise High Probability

Slightest Possibility

Substantial Possibility Probability

Almost Certainty

Thus, fuzzy logic accommodates the cognitive limitations of
humans.  Fuzzy logic offers a rich approach to elaborating the law’s
gradated scale of likelihood.  Its real value, however, is that it captures
the epistemic function in law better than probability.  We want to
know the belief in truth of a factual element, not the chance that the
element will turn out to be 100% true.

II. CONJOINING ASSESSMENTS

This Part will explain that probability’s product rule for con-
joined events does not apply in fuzzy logic.  Then, this Part will show
how the law relies on fuzzy logic when it applies the standard of proof
to each element of claims or defenses, without worrying about apply-
ing the standard to conjoined elements.

A. Fuzzy Operators

The power of the fuzzy conceptualization becomes more obvious
when one considers the combination rules of fuzzy logic.  These can
become quite complicated, but for our purposes those of special inter-
est are the most basic fuzzy operators, or connectives.

One constructs any system of logic by stipulating a small but ade-
quate number of logical operators, such as intersection (or conjunc-
tion or ∧ or AND), union (or disjunction or ∨ or OR), and negation
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(or ~ or ¬ or NOT).  They are the premises that generate an inter-
nally sound and complete system.85

1. Maximum and Minimum

a. Classical Logic’s Operators

This bivalent system, which recognizes only the two values of true
and false, stipulates the following functions for intersection and
union:

truth(x AND y) = 1 if both x and y are true, but 0 otherwise

truth(x OR y) = 1 if either x or y is true, but 0 otherwise

Another way to state these two functions is this:
truth(x AND y) = minimum(truth(x), truth(y))

truth(x OR y) = maximum(truth(x), truth(y))

A different format in which to stipulate an operator is by truth table.
The one for negation indicates that the negative of 1 is 0, and vice
versa:

1

0

0

1

~

All things bivalently logical flow from these three stipulations.

b. Fuzzy Logic’s Operators

Those three operators for fuzzy logic are just the same, except
that they must extend to give results for values between 0 and 1.86

85 See SIDER, supra note 6, at 25, 35–37, 67–80 (showing also that in going beyond R
two-valued logic, one needs to stipulate the implication operator as well).

86 See Brian R. Gaines, Fuzzy and Probability Uncertainty Logics, 38 INFO. & CONTROL

154 (1978) (showing that the operators for fuzzy logic and probability theory are the
same until one adds the assumption of the excluded middle).
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Thus, the AND and OR functions work this way for sets in fuzzy logic,
when x and y can take any value from 0 to 1:87

truth(x AND y) = minimum(truth(x), truth(y))

truth(x OR y) = maximum(truth(x), truth(y))

So, let X be the universe, and let A be one fuzzy set and B be
another fuzzy set in the universe.  The two sets might be independent,
in the sense that the degree of membership in one set has no effect on
the degree of membership in the other set, but they need not be.
Designate the membership of element x in A as truth(x), and the
membership of element y in B as truth(y).  Then, the truth of the
conjunction of x and y equals the smaller of the truth of x and the
truth of y.

For an example involving a common element, let X be the uni-
verse of men, and let A be the set of tall men and B be the assumedly
independent set of smart men.  So, if Tom is a .30 member of A and a
.40 member of B, then Tom is a .30 member of the set of tall and
smart men.  The intersecting set becomes smaller, but Tom’s degree
of membership in it does not decrease below the lower of his tallness
and smartness levels.  In other words, the truth value for the intersec-
tion would be the minimum value of the two memberships in A and
B.

The following diagram may help to visualize this so-called MIN
operator by indicating the shaded intersection of the two sets, where m
gives the degree of membership of an element in the fuzzy set.  Along
the x-axis, for any z that falls in the intersection, the degree of mem-
bership therein will be the degree of membership in A or B, which-
ever has the lower membership line at that point z:88

87 For elaborations of fuzzy intersection and union, see Radim Bĕlohlávek et al.,
On the Capability of Fuzzy Set Theory to Represent Concepts, 31 INT’L J. GEN. SYS. 569, 575
(2002); Ronald R. Yager, Connectives and Quantifiers in Fuzzy Sets, 40 FUZZY SETS & SYS.
39 (1991).

88 The figure comes from Ross & Parkinson, supra note 17, at 33; see also id. at R
34–36 (extending the operator from an element’s membership in multiple fuzzy sets
to the relationship of different elements’ memberships in different fuzzy sets).
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c. Justifying Logical Operators

Now, one can generate a logic system from any adequate group
of operators.  It will be internally sound on a formal level, but it will
not be useful unless the operators make sense in our world.  What
makes sense is a philosophical question.  But philosophers have to
punt on this question, saying that operators make sense if they pro-
ceed from “genuine logical truths” and if their formal logical conse-
quences constitute “genuine logical consequences.”89

There are several signs that fuzzy logic makes sense.  To begin,
fuzzy logic does not produce nonsensical results.  For example:

The simplest and most fundamental qualitative law of
probability is the extension rule: If the extension of A includes the
extension of B (i.e., A ⊃ B), then P(A) ≥ P(B).  Because the set of
possibilities associated with a conjunction A&B is included in the set
of possibilities associated with B, the same principle can also be
expressed by the conjunction rule P(A&B) ≤ P(B): A conjunction
cannot be more probable than one of its constituents.  This rule
holds regardless of whether A and B are independent . . . . Further-
more, it applies not only to the standard probability calculus, but
also to nonstandard models . . . .90

The MIN rule in fuzzy logic conforms to the extension rule by setting
the conjoined probability of elements, whether or not independent,
as equal to the least likely element.

More than that, the MIN rule affirmatively makes sense as the way
for conjoining multivalent values.  Tom really appears to be a .30

89 See SIDER, supra note 6, at 1–2, 6–11. R

90 Amos Tversky & Daniel Kahneman, Extensional Versus Intuitive Reasoning: The
Conjunction Fallacy in Probability Judgment, in HEURISTICS AND BIASES 19, 20 (Thomas
Gilovich et al. eds., 2002) (emphasis omitted).
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member of the set of tall and smart men.  It is therefore the way to
combine truth degrees more generally.91

Furthermore, fuzzy logic is not wildly different from classical
logic.  It does not require a radical overhaul of worldview.  The choice
posed is between (1) fuzzy logic and (2) bivalent logic with its
probability overlay.  In essence, fuzzy logic says only that we should
account for the undeniable imprecision of the world by altering the
system’s operators, rather than by some awkward afterthought
squeezed into the probability calculus.

At bottom, though, fuzzy logicians are arguing that their logic is
different because it makes more sense than classical logic.  “There are
many reasons to get interested in nonclassical logic, but one exciting
one is the belief that classical logic is wrong—that it provides an inade-
quate model of (genuine) logical truth and logical consequence.”92

The argument is that classical logic, by assuming the principle of biva-

91 The proof would go as follows.  Reasoning backward from what is necessary for
a system to make sense,

x ∧ x = x (1)
x ∨ x = x (2)
x ∧ y ≤ x (3)
x ∨ y ≥ x (4)

while associativity and distributivity need to prevail as well,
(x ∧ y) ∧ z = x ∧ (y ∧ z) (5)
x ∨ (y ∧ z) = (x ∨ y) ∧ (y ∨ z) (6).

Then, using (2) and (3),
x ∧ (x ∨ y) = (x ∨ x) ∧ (x ∨ y) ≤ x

and, using (4) and (6),
x ∨ (x ∧ y) = (x ∨ x) ∧ (x ∨ y) ≥ x

and their having been shown to be equal, and both ≤ and ≥ x,
x ∧ (x ∨ y) = x ∨ (x ∧ y) = x (7).

Now, designate y as the lesser or equal of the two truth values x and y.  There should
be a z such that x ∧ z = y, which allows the final conversions with the use of (7) and of
(5) and (1), respectively:

x ∨ y = x ∨ (x ∧ z) = x = MAX(x, y)
x ∧ y = x ∧ (x ∧ z) = (x ∧ x) ∧ z = x ∧ z = y = MIN(x, y).

See Bellman & Giertz, supra note 77, at 151–55 (proving that the MIN and MAX oper- R
ators “are not only natural, but under quite reasonable assumptions the only ones
possible” for fuzzy sets); D. Dubois & H. Prade, A Review of Fuzzy Set Aggregation Connec-
tives, 36 INFO. SCI. 85, 89–92 (1985) (showing that conjoined membership must of
course be less than or equal to the minimum membership, but that accepting a value
less than that minimum would produce nonsensical results).

92 SIDER, supra note 6, at 72. R
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lence, assumes one too many logical truths.  It assumes a world where
everything appears as on the left in this figure:93

Not X

X

Not X ?

X ?

Definite logic Fuzzy logic

Like Euclidean geometry and Newtonian physics, classical logic is very
useful, but an oversimplification.

2. Product Rule Contrasted

a. Applying Different Rules

The reader should nevertheless be sensing that something odd is
afoot.  Indeed, this is where most readers will abandon ship.  After all,
the probability operation for AND is multiplication of the probabili-
ties of independent events.94  But fuzzy logic tells us to apply the MIN
operator even for independent events.95

Think of a room with ten men, each five feet-six inches tall.  We
might think of each as .30 tall.  What would we term the tallness of the
ten men as a group?  It would still be .30 by the MIN operator.  It
would not be .3010, a very tiny number yielded by the product rule to
reflect the remote chance of them all turning out to be truly tall.

93 The figure comes from 3 AVI SION, LOGICAL AND SPIRITUAL REFLECTIONS ch. 4
(2008), available at http://www.thelogician.net/6_reflect/6_Book_3/6c_chapter_04.
htm.

94 For interdependent events, the probability operation for conjunction is P(A)
multiplied by P(B|A).  Meanwhile, fuzzy logic tells us to apply the MIN operator,
which is so much easier to comprehend and apply.

95 Analogously, De Morgan’s rule provides that the product rule works for the
OR operator on probabilities too: the disjunction of two independent statements
equals the negation of the conjunction of the negations of those statements.  Mean-
while, fuzzy logic tells us to apply the MAX operator.
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Now if the room has ten men, with three “short” men five feet-six
inches or below and three “dumb” men, then one man picked at ran-
dom has a .09 chance of being both short and dumb, assuming inde-
pendence.  So, here the product rule applies.

That is, the probability operator is not inconsistent with the fuzzy
operator.  The two just contemplate different contexts.  Indeed, the
two are fundamentally consistent, because traditional probability is a
special case of fuzzy logic’s more general theory of uncertainty.  So, it
is not that one of these theories of uncertainty is correct and the other
is wrong.  It is that one theory can include the other.

For random uncertainty in a bivalent world, the probability oper-
ator will give the right answer, but so would the MIN rule.  First, if the
world were crisp, and x and y were known to be either true=1 or
false=0, then their conjunction would be either 1 if both were true or
0 if not.  In this narrow setting, the probability and fuzzy operators are
equivalent.  That is, the product rule would be no different from the
MIN operator: truth(x)•truth(y)=minimum(truth(x), truth(y)).  Sec-
ond, the chance of complete conjunction of currently unknown vari-
ables—that x and y will both turn out independently to be 1, or
completely true—will be the product of their individual probabilities
in either logic system.  The product will make most sense in connec-
tion with frequentist probabilities.  Still, the uncertainty could con-
cern unique events, because one can speak of the subjective
probability of x and y turning out to be either true=1 or false=0.

Remember that there are multiple kinds of uncertainty, includ-
ing the indeterminacy resulting from scarce information or conflict-
ing evidence and also the uncertainty characterized as either
vagueness or randomness.  If one tries to deal with the variedly uncer-
tain real world, the more inclusive approach to conjunction becomes
appropriate.  In a fuzzy world, the product rule retreats to a special-
ized role, applying only when the independent values of x and y hap-
pen to be randomly uncertain without being vague.  The product of
probabilities gives the chance of things, which can take only a value of
1 or 0, coming up as 1 in two independent trials under conditions of
random uncertainty.  The intersection of degrees of truth is telling
you how much you believe two statements put together.  The latter is
more general.

In sum, the product rule is not a feature only of classical logic.
Both under classical logic with a probability overlay and under fuzzy
logic, the MIN rule will reduce to the product rule—if one assumes
bivalence and then adds an assumption of random independence.
But the product rule will prevail under either system only if the ele-
ments under consideration are always ascertainable to be completely
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true or completely false.  Thus, the question becomes whether one
should so assume bivalence.

b. Choosing Between Rules

Because both the product rule and the MIN operator can give
correct, but sometimes different, answers, they must be giving answers
to different questions or, rather, questions resting on different
assumptions.  The product of probabilities is answering a question dif-
ferent from what the intersection of degrees of truth is answering.
The nature of the desired answer will determine the correct question
to ask and, hence, whether the product rule or the MIN operator is
appropriate to apply.

First, as a thought experiment, ponder which is the correct ques-
tion to ask when one wants to know if Tom is tall and smart.  Begin
with the two membership statements given above—Tom is a .30 mem-
ber of A and a .40 member of B.  Those numbers mean something
like “Tom is not so tall” and “Tom is not so smart.”

The fuzzy combination would yield: “Because Tom is not so tall
and Tom is not so smart, Tom is not such a tall, smart man.”  The MIN
operator yields a .30 belief in that intersection.  The traditionally
probabilistic calculation, however, would yield: “Because Tom is not
so tall and Tom is not so smart, Tom is likely a short, dumb man.”
The chance of a tall and smart Tom according to the product rule is
.12, not .30, so that the product is lower than either truth(x) or
truth(y).

This calculation by the product rule would be appropriate for
certain kinds of decisions (and bets), but seems inappropriate for
determining one’s belief in Tom’s membership in the set of tall and
smart men.  Multiplication of probabilities gives the chance that Tom
is both completely tall and completely smart, while what we want to
know is the degree to which he is both tall and smart.  The inappro-
priateness becomes much more obvious as one combines more and
more elements in the calculation, such as tall, smart, rich, and bald
men.  The product calculation will approach .00, even if some of the
values are very high.  The fuzzy combination, however, will go no
lower than the minimum truth value.  In other words, a fuzzy intersec-
tion of very true statements is very true, not almost completely untrue.

Second, one might try to classify a thing as a chair and as a red
object.  If the thing has some of the characteristics of a chair96 and
some pinkish hue, one would give it, perhaps, a .6 membership in the

96 See H. G. WELLS, A MODERN UTOPIA 381 (1905) (“I would undertake to defeat
any definition of chair or chairishness that you gave me.”).
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set of chairs and a .5 membership in the red set.  Now, if one had to
give it a membership in the class of red chairs, one would say .5 for
this reddish chair-like thing.  One would not apply the product rule to
say .3.

When would one apply the product rule for probabilities?  One
would do so when things are completely chairs or not and red or not,
and you cannot see the thing, but you have an idea of the likelihood
of chairishness and redness.  To compute the chances of what bivalent
values one will see when the thing is uncovered, and the thing
becomes clearly a chair or not and red or not, one would use the
product rule.

Many sorts of legal situations call for the product rule.  In
manipulating and evaluating statistical evidence, the fact-finder would
often use it.97  In calculating the odds of future events, as in comput-
ing expected costs on a motion for a preliminary injunction, the prod-
uct rule would be appropriate.98  There is a proper realm for the

97 A colleague gave this illustration:
Suppose that the Black Death strikes some town in England in 1349.

Let’s suppose that by the end of the year it kills 500 of the 1000 people then
living in the town.  A historian today is interested in figuring out whether ten
particular people who lived in the town at the beginning of 1349 were killed
by the Black Death later that year.  The historian searches through the ceme-
teries, through church records and through other materials but comes up
empty.  There is simply no specific credible evidence about how any of these
ten died.  The historian can’t even figure out how old each of them was at
the time and thus adjust the odds based on different survival rates for differ-
ent ages.  Accordingly, his best guess is that for each of the townspeople,
there is 50% probability that he or she died from the Black Death.  Now the
historian wants to know what are the odds that all ten died from the Black
Death.  The product rule says it’s 1/1024 (unless there’s some reason to
think these are connected events, like they shared a household, so let’s
assume no info is known about such things).  Fuzzy logic says it’s one in two,
which seems very obviously wrong.  Indeed, assuming again that we know
nothing further about any of the inhabitants of the town, fuzzy logic would
tell us that the odds that everyone in the town died from the Black Death are
one in two, but we know—because we assumed it to begin the inquiry—that
the odds that everyone in the town died of the Black Death are zero.  Only
half of the inhabitants died of the Black Death.  This seems to me a proof by
contradiction of the applicability of the product rule to this sort of case.

E-mail from Michael Dorf to author (June 3, 2012, 22:04 EST).
98 See John Leubsdorf, The Standard for Preliminary Injunctions, 91 HARV. L. REV.

525, 542 (1978) (“The court, in theory, should assess the probable irreparable loss of
rights an injunction would cause by multiplying the probability that the defendant
will prevail by the amount of the irreparable loss that the defendant would suffer if
enjoined from exercising what turns out to be his legal right.  It should then make a
similar calculation of the probable irreparable loss of rights to the plaintiff from deny-
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product rule, just as there is one for the straightforward application of
the MIN rule.  The question before us is whether a significant share of
legal applications of the standard of proof falls into the latter realm.

Third, picture a column of one hundred coins, thirty of them
heads randomly placed, and another column of one hundred coins,
forty of them heads randomly placed.  Then only about twelve paired
rows will have two heads.  Or picture a column of one hundred peo-
ple, thirty of them tall people randomly placed, selected from a uni-
verse where people are either completely tall or completely short; and
picture another column of one hundred more people, forty of them
smart people randomly placed, selected from a universe where people
are either completely smart or completely dumb.  Then only about
twelve paired rows will be persons tall and smart, respectively.  Now,
picture instead a column of varying beliefs in the tallness of one hun-
dred people selected from a universe where people have the tallness
trait distributed naturally, aligned from tall down to short, and
another column of one hundred beliefs about persons, aligned from
smart down to dumb.  The beliefs concerning the thirtieth pair from
the bottom will be not so tall and not so smart, respectively, while the
twelfth pair from the bottom will be a diminutive dim couple.

c. The Law’s Choice

Traditional probability and degrees of truth do therefore differ.
They behave differently in the conjunction setting.  Put simply, the
product rule gives the random chance of the simultaneous and inde-
pendent occurrence of multiple crisp elements, while the MIN opera-
tor measures the intersection of sets.  Once lawmakers have in mind
the difference between the product rule and the MIN operator, they
have to decide which the law should apply.

Imagine the law is trying to determine if Tom himself was at fault,
that is, whether the perpetrator was Tom and whether the perpetrator
was at fault.  A number of features of this compound question indicate
that the better approach for law is fuzzy logic.  First, the two parts of
the question are epistemically very different, one being a factual event
and the other a legal construct; the law needs commensurable mea-
sures to combine them.  Second, as already argued, the law should not
be worrying too much about the chance of a truth value of 1 turning
up; instead it should ascertain whether the element has a sufficient
truth value.  Third, in establishing past truths, the law should be even
less concerned with the chance of a 1 repetitively turning up; applying

ing the injunction.  Whichever course promises the smaller probable loss should be
adopted.” (footnote omitted)).
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the product rule to subjective probabilities for legal fact-finding actu-
ally seems illogical.99

That third point is indeed determinative.  One can similarly make
the point by distinguishing between ex ante probabilities, used to
make predictions of what you will eventually know, and ex post
probabilities, used to decide what actually happened even though you
will never know for sure.  If you are placing a bet predicting whether
two randomly uncertain events will independently happen together,
then multiply their probabilities.  But if you are looking back to the
past, then you need a different operator.  You are no longer trying to
figure the odds of two things being sure, but rather how sure you are
that one thing happened while you remain somewhat sure that the
other happened.  “The ex post probability for complete instantiation
of the causal law is equal to the lowest ex post probability for instantia-
tion of any constituent element.”100

In other words, we want to know if it is a reddish chair, not what
the chances are that it is 100% a chair and also 100% red.  We want to
know if Tom’s fault is sufficiently true, not the chances of somehow
discovering both the perpetrator certainly to be Tom and the perpe-
trator to be completely at fault.  Here is another way to see this.  If
Tom is 60% likely the perpetrator, and the perpetrator is 70% at fault,
the 60% figure means that it is 60% likely that Tom is surely the per-
son who was 70% at fault.  We thus have a 60% chance of Tom’s being
legally at fault, just as the MIN rule would say.

While the MIN rule seems the obvious choice if identity is a mat-
ter of occurrence uncertainty and fault is a matter of imprecise vague-
ness, I think it still should apply even if both fact-finding percentages
measure only random uncertainty.  Having different operators for dif-
ferent kinds of elements, leading to some weird hybrid calculation
unknown to current law, would be more than awkward.  But I am
arguing that the MIN rule is the right approach, not just a convenient
one.  A 60% chance of the weakest link represents the chance that all
the other elements are more likely than not to exist.  Because a 70%
chance of fault is good enough for liability, we should not further
account for that chance of finding complete fault.  To multiply the
chances, getting 42%, would be double counting, as it represents the
chances of fully establishing both identity and fault.  The chances of

99 See Didier Dubois & Henri Prade, A Set–Theoretic View of Belief Functions: Logical
Operations and Approximations by Fuzzy Sets, in CLASSIC WORKS OF THE DEMPSTER–SHAFER

THEORY OF BELIEF FUNCTIONS, supra note 55, at 375, 403 (rejecting the application of R
“arguments deriving from the study of statistical experiments”).
100 Richard W. Wright, Proving Facts: Belief Versus Probability, in EUROPEAN TORT

LAW 2008, at 79, 93 (Helmut Koziol & Barbara C. Steininger eds., 2009).
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proving completely each of multiple elements simultaneously would
be an odd inquiry when the law does not demand complete proof of
any.  Because establishing every element to 100% is not what the law
calls for, the chances of doing so are irrelevant.  The relevant inquiry
comprises how likely the weakest element is, given that all the other
elements would simultaneously be stronger.

Provability versus probability—Reactions of colleagues have con-
vinced me that elaboration of this assertion, even in multiple ways, is
necessary.  So, up to this point, I have established that the MIN and
product rules are both valid operators, but they govern in different
realms.  Which, then, should govern in applying the standard of
proof?

In explaining the law’s choice, let me begin with the contrary
intuitive yearning to apply the product rule.  If element A is 60%
likely and element B is 70% likely, if both A and B either occurred or
did not, and if the law wants to allow recovery only if A and B both
occurred, then it does seem that the plaintiff should lose on this 42%
showing.

My initial counterargument is that this result is tough on plain-
tiffs.  Multiple elements would stack the deck against real-world plain-
tiffs, who must live with the imperfections of available evidence.
Imagine some other plaintiff having proven four elements each to
70%.  That plaintiff has done a really good job in presenting a strong
case.  The plaintiff has well established each element before passing to
the next one.  The plaintiff has done exactly what we should demand.
Yet this plaintiff would lose with a miserable 24% showing under the
product rule.  What happened?  How did a strong case become a sure
loser?  Regardless of how, plaintiffs apparently would lose strong cases
they really should win.  Moreover, defendants at fault would not be
receiving a corrective message.  These errors would detrimentally
affect economic efficiency.

Perhaps the law should not interest itself in the probability of the
elements all turning out to equal 1, if only the veil on perfect knowl-
edge were lifted.  If every event and thought were somehow video-
taped, then we would be partially living in an ascertainably bivalent
world, and the law’s approach to standards of proof might have to
change.  But I think the law should not imagine the real world to be a
videotaped one.  Adopting a false assumption simply in order to make
a familiar math tool available is usually indefensible.  The law should
not ask the odds of the elements bivalently and conjoinedly existing
on the videotape.  The law instead should ask how well the burdened
party has proven its case.  The fact-finder needs to operate on the
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basis of its resulting internal beliefs about the world, rather than pre-
tending that external knowledge is attainable.

Provability, not probability, is the law’s concern.  Forming a belief
as to what happened, rather than a prediction about a veil-lifting that
will never happen, is the aim.  The law wants to know whether the
state of our knowledge based on proof justifies recovery.  Fuzzy logic
vaguely deals with the “probably provable,” while traditional
probability crisply deals with the “provably probable.”101

Expression of this provability comes in terms of membership, to a
degree, in the set of true statements, with the degree measured as a
truth value.  Provability of one element does not detract from the
provability of another.  An easily provable A and an easily provable B
mean that it will be easy to prove A and B.  The intersection of sets
represents the interaction of elements, and the MIN rule governs the
intersection of sets.  Consequently, if the plaintiff proves element A to
60% and B to 70%, then the provability that the case is in the set of (A
AND B) is 60%.

The plaintiff has shown that the conjoined claim is 60% provable
and the defense 40% provable.  That is, the belief in the claim is
stronger than its negation (the belief that one or the other element or
both elements failed).  To minimize errors, the law should decide in
conformity with the stronger belief.  If the law were to deny liability in
these circumstances because of some attraction to bivalent probability
theory, more often than not the law would be wrong.  Giving the
plaintiff a recovery and the defendant a loss thus is economically effi-
cient.  Accordingly, the law should and does instruct the use of the
mathematically sound way to combine beliefs, here the MIN rule.

This key distinction between probability and provability was at the
heart of Oxford philosopher L. Jonathan Cohen’s almost impenetra-
bly brilliant book entitled The Probable and the Provable.102  He argued
that the task of the law court is to decide, by use of inductive reason-
ing, what is provable.  Importing traditional probability into the pro-

101 Cf. SCHUM, supra note 22, at 243 (discussing belief functions, and crediting R
Judea Pearl, Bayesian and Belief-Functions Formalisms for Evidential Reasoning: A Concep-
tual Analysis, in READINGS IN UNCERTAIN REASONING 540, 571 (Glenn Shafer & Judea
Pearl eds., 1990), for this phrasing).
102 L. JONATHAN COHEN, THE PROBABLE AND THE PROVABLE (1977), reviewed by

David A. Schum, 77 MICH. L. REV. 446 (1979), and Carl G. Wagner, 1979 DUKE L.J.
1071; see also BERTRAND RUSSELL, HUMAN KNOWLEDGE: ITS SCOPE AND LIMITS 359–61
(1948) (arguing comparably that his “degrees of credibility” do not follow the rules of
traditional probability); Susan Haack, The Embedded Epistemologist: Dispatches from the
Legal Front, 25 RATIO JURIS 206, 217–18 (2012) (arguing comparably that her “degrees
of warrant” do not follow the rules of traditional probability).
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ject, such as the product rule, produces a whole series of anomalies.
Instead, the conjunction rule for inductive reasoning is this: “The con-
junction of two or more propositions . . . has the same inductive
probability . . . as the least” likely conjunct.103

Thus, the respective realms of the MIN and product rules do not
turn on the nature of the fact issue, but on the question the system
wishes to pose.  Which image fits the fact-finding endeavor: the bet-
ting table or set theory?  I think that standards of proof are looking for
provability based on set theory.  They therefore take the same
approach to facts involving occurrence uncertainty as they do on to
facts involving vagueness.

Monty Hall’s contribution—Why do smart people so resist
accepting that provability differs from probability?  “When the plain-
tiff proves one element to 60% and another to 70%, their conjunction
is 42%—and I am sticking to it!”  This reaction irresistibly brings to
mind the usual reaction to the celebrated Monty Hall problem.  “It is
customary for books about probability to try to persuade otherwise
intelligent people that they are lousy when it comes to reasoning
about uncertainty. . . . In presenting the Monty Hall problem to stu-
dents I have found the common reactions to follow the well-known
five stages of grief.”104  There is denial, anger, bargaining, depression,
and then acceptance.

Consider the related “sibling gender problem.”105  A few years
back you saw Tom walking down the street with his son.  Your com-
panion said that she remembers he has two children.  What are the
chances that the other child is a boy?  The answer is one-third,
because the equally probable possibilities are BB, BG, and GB.  But if
your companion had said that the elder child was a boy, the answer
would be one-half!  The additional information, seemingly irrelevant,
provides ordering that affects the odds.

103 COHEN, supra note 102, at 266.
104 JASON ROSENHOUSE, THE MONTY HALL PROBLEM 5 (2009).  The literature here

is immense.  One nifty entry was a report on how overlooking the additional-informa-
tion effect on probabilities had invalidated decades of research on cognitive disso-
nance. See John Tierney, And Behind Door No. 1, a Fatal Flaw, N.Y. TIMES, Apr. 8, 2008,
at F1, available at http://www.nytimes.com/2008/04/08/science/08tier.html (“Even
some of the smartest mathematicians initially come up with the wrong answer to the
Monty Hall Problem.  Perhaps the best way to understand it is to play the game your-
self.”).  The web-version of the article links to a site, http://www.nytimes.com/2008/
04/08/science/08monty.html#, that allows you to play the game repetitively and so
build to the right strategy.
105 See ROSENHOUSE, supra note 104, at 26, 138–41, 147–48. R
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After you have progressed through a couple of the stages of grief
toward acceptance of that result,106 consider that traditional
probability is generating all those emotions.  When a problem calls for
rejecting bivalence, you should expect that sometimes the answer will
be similarly nonobvious.  For example, reconsider a plaintiff trying to
prove the identity of the perpetrator being Tom and also to prove the
perpetrator being at fault.  True, if the randomized odds are 60% and
70%, the odds of Tom being at fault are 42%.  The product rule gives
that result.  But if the plaintiff has proved fault to 70%, the odds on
the remaining question of Tom being the perpetrator are 60%.  The
MIN rule sets the likelihood of the conjunction at 60%.

Using the setting of the more familiar “Bertrand box paradox”107

for elaboration of the shift to multivalence, imagine that there is an
identity box and a fault box, each containing a ball that is either black
for liability or white for non-liability.  The two balls came, respectively,
from an urn with 600 of 1000 balls being black and from another urn
with 700 of 1000 being black.  The odds of the two balls both being
black are 42%.  But if you uncover or otherwise decide that the fault
box has a black ball, the odds of the identity ball being black are 60%.

What is going on?  The adherents of 42% are assuming that the
pairings are randomized.  But in inductively proving a case—by estab-
lishing two truth values or fuzzy provabilities—the plaintiff was order-
ing the information.108  The plaintiff thereby removed the
randomization feedback loop between the boxes, a randomization of
information essential to the 42% calculation.

Under its standard of proof, the law has decided to act on the
basis of a partially proved case, not on the basis of the probability of a
fully proved case.  Fault proven to 70% will never convert to 1 or 0.

106 If you resist the result, and persist with two-out-of-three odds that the younger
child is a girl, I propose the following gamble to you.  You will bet on whether a
hidden flipped coin is heads.  But before placing the bets, I flip another coin, and it
comes up tails.  You then should believe there is a two-thirds chance that the hidden
coin is heads, and so should offer me better than even money.

The effect of additional information emerges from this sequence: Flip two coins.
What are the odds that they will both be heads?  One-in-four.  If you know one of
them was heads, what are the odds they both were heads? One-in-three, because
knowing the result of one flip tells us something about the other.  If instead you know
the first flip was heads, what are the odds they both were heads?  One-in-two.
107 See ROSENHOUSE, supra note 104, at 14–16.  Three boxes respectively contain R

two black balls, two white balls, and one black ball and one white ball.  You pick a ball
from one box, and it is black.  What are the odds that it came from the mixed box?
The answer is one-in-three.
108 Recall my illustration of the two ordered columns of tall and smart people,

supra text accompanying note 98. R
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That means that 30% of the results are not findings of nonfault, but
erroneous failures to find fault.  Fault having satisfied the standard of
proof, the 30% of pairings with nonfault then become errors.  To min-
imize errors, the fact-finder should consider only the 70% of pairings
of identity with established fault.  Because 60% of those pairings will
result in liability and 40% not, deciding in line with the 60% showing
will minimize errors and optimize efficiency.109

Role of assumptions—There lies the key to the paradox.  If one
assumes bivalence, then one must convert fault to 1 or 0 before pro-
ceeding.  If one instead recognizes multivalence, one can proceed
with fault standing as a partial truth.  The mathematically sound way
to conjoin partial truths is the MIN rule.  Therefore, recognition that
the plaintiff can prove any element only to a degree produces an ele-
ment-by-element approach.

Instinctive resistance to the MIN rule derives from residual yearn-
ing to apply a multiplicative rule of traditional probability to a prob-
lem it cannot handle, the problem of fuzzy provability.  It can handle
only randomly uncertain estimates of independent events in a binary
world, because it is built on the logical assumption of bivalence.

109 Another colleague, after putting aside problems of market share and statistical
evidence, challenges me to

assume the plaintiff’s decedent took a drug either from manufacturer D1 or
from manufacturer D2 (the drugs are identical).  Assume 60% probability of
D1 and 40% of D2.  Assume further that it is 60% likely that the drug (from
whichever manufacturer) actually caused the death.  So 4 possibilities: D1’s
drug caused the death (36%); D2’s drug caused the death (24%); neither
D1 nor D2 caused the death (40%). Why should P collect against D1?

E-mail from George Alan Hay to author (June 7, 2012, 11:15 EST) (names of parties
altered).

Professor Hay is conducting a thought experiment, in which we pull off the veil
to reveal a bivalent scheme and then randomly distribute the cause over the identity
results.  The drug as cause of death sometimes becomes a 1, but in forty out of one
hundred cases it will become 0.  The zeros fall randomly, instead of dropping out.

The thought experiment has no relevance to what the law or economic theory
should do based on the actual proof, however.  The thought experiment changes the
problem, changing it in ways that affect what law and economics would do with
respect to D1’s liability.  In the case against D1, liability when the cause will randomly
be either 1 or 0 is a different question from liability when the plaintiff has proved
cause to 60%.

So, I am indeed saying that P has a 60% provable case against D1, and should win
just as the law says.  P enjoys a truth value of 60% on the proposition that D1 made
the drug, and another of 60% that the drug caused the death.  This means that the
proposition that D1’s drug caused the death is 60% a member of the set of true state-
ments.  In other words, given the current state of our knowledge, P has 60% of full
proof against D1.  To decide against P would be to favor a defendant with 40% of a
defense.
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When an assumption no longer prevails, one cannot apply the rules
built on the assumption.  We tend to forget that mathematical con-
structs operate only within their assumed system, and that the
probability calculus assumes all events will take a value of either 1 or 0.
Multivalence calls for new math.  We must move up to MIN.

There is more at work in obscuring the picture.  Even if one
acknowledges that the multiplicative rule should apply only in an
abstract world of bivalence, one will not intuitively sense the subtle
shift in a problem’s setting from a bivalent assumption to a multiva-
lent reality in which the middle is no longer excluded.  The shift can
be almost imperceptible.  But when the problem is finding facts of
which one will never be sure, the picture must be painted in multiva-
lent grays.

The bottom line is this: as an artifact of bivalence, the product rule
does not apply to subjective probabilities for fact-finding.  I therefore submit
that degrees of truth behave more appropriately than classical logic
and probability theory for the purposes of the standard of proof.110

But, again, my central question is which representation the law
employs.  Here, as I have already said, and as I shall show in the
upcoming resolution of the conjunction paradox, I am confident that
it is degrees of truth across the board.

3. Negation Operator

Accepting the usefulness of fuzzy logic prompts interest in other
fuzzy operators.  Another basic one is negation.  Here truth(notx) =

110 I rest on the positive arguments for the appropriateness of fuzzy logic.  Addi-
tionally, there are practical arguments against the product rule.  It might be cogni-
tively challenging to apply. See Porat & Posner, supra note 70, at 47–48.  Or the effect R
of an element-by-element approach might offset the inefficiencies of other legal rules.
See Alex Stein, Of Two Wrongs That Make a Right: Two Paradoxes of the Evidence Law and
Their Combined Economic Justification, 79 TEX. L. REV. 1199 (2001).  I do not need to
rely on these practical arguments.

Some such arguments, however, are just wrong.  For example, some argue that
for jury decision-making the necessity of convincing multiple fact-finders means, by
virtue of the Condorcet theorem and the supermajority requirement, that the plain-
tiff’s task is way too demanding; accordingly, to ameliorate the difficulty of proof, the
system does not impose the additional demand of a product rule and instead pro-
ceeds element-by-element. See Saul Levmore, Conjunction and Aggregation, 99 MICH. L.
REV. 723, 734–45 (2001).  This position rests on several errors. See Ronald J. Allen &
Sarah A. Jehl, Burdens of Persuasion in Civil Cases: Algorithms v. Explanations, 2003 MICH.
ST. L. REV. 893, 904–19; Paul H. Edelman, On Legal Interpretations of the Condorcet Jury
Theorem, 31 J. LEGAL STUD. 327, 343–48 (2002).  To me, the most obvious error lies in
ignoring that a decision for the defendant also requires the agreement of the multi-
ple fact-finders.
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(1 - truth(x)), just as in classical logic.  The negation is the
complement.111

However, the whole fuzzy set A and its complement do not neces-
sarily add to unity, because fuzzy logic does not obey the law of the
excluded middle.  The following figure demonstrates this fact, with
the left graph representing the fuzzy set A by the solid line and its
complement by the dotted line, and the right graph’s dark upper line
representing the union of A and its complement by operation of the
MAX function:112

0 x

1

µ

0 x

1

µ
 _
A

A

The serrations in the upper line in the right-hand graph show that A
and its complement do not add to equal the universe X, reflecting
that the law of the excluded middle does not hold.  There will be an
area where beliefs are neither in the set of belief nor in the set of
disbelief, but instead are indeterminate.

B. Legal Application: Conjunction Paradox

The payoff of the fuzzy logic approach emerges as one realizes
how it affects the view of the proof process.  Consider the best-known
statement of the infamous conjunction paradox:

We purport to decide civil cases according to a more-probable-
than-not standard of proof.  We would expect this standard to take
into account the rule of conjunction, which states that the
probability of two independent events occurring together is the
product of the probability of each event occurring separately.  The
rule of conjunction dictates that in a case comprised of two inde-
pendent elements the plaintiff must prove each element to a much
greater degree than 50%: only then will the plaintiff have shown
that the probability that the two elements occurred together
exceeds 50%.  Suppose, for example, that a plaintiff must prove

111 But cf. Bellman & Giertz, supra note 77, at 155–56 (showing that other nega- R
tion operators are possible).
112 The figure comes from TIMOTHY J. ROSS, FUZZY LOGIC WITH ENGINEERING APPLI-

CATIONS 37 (3d ed. 2010).
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both causation and fault and that these two elements are indepen-
dent.  If the plaintiff shows that causation is 60% probable and fault
is 60% probable, then he apparently would have failed to satisfy the
civil standard of proof because the probability that the defendant
both acted negligently and caused injury is only 36%.

In our legal system, however, jurors do not consider whether it
is more probable than not that all elements occurred in conjunc-
tion.  Judges instruct jurors to decide civil cases element by element,
with each element decided on a more-probable-than-not basis.
Once jurors have decided that an element is probable, they are to
consider the element established, repress any remaining doubts
about it, and proceed to consider the next element.  If the plaintiff
proves each element by a preponderance of the evidence, the jury
will find in his favor. . . . Thus, jurors may find a defendant liable
even if it is highly unlikely that he acted negligently, that is, the
conjoined probability of the elements is much less than 50%.  In
such cases, the verdict fails to reflect a probable account of what
happened and thus fails to minimize the cost of judicial errors. . . .

. . . .

. . . Although courts direct juries to consider and decide each
element seriatim, juries do not consider each item of evidence seria-
tim when deciding whether a given element is proved.  The jury
must decide each element by looking at all of the evidence bearing
on proof of that element.  Thus, although the jury does not assess
the conjunction of the elements of a case, it does decide each ele-
ment by assessing the conjunction of the evidence for it.113

113 Charles Nesson, The Evidence or the Event? On Judicial Proof and the Acceptability of
Verdicts, 98 HARV. L. REV. 1357, 1385–88 (1985) (footnotes omitted).  Professor Nes-
son saw the paradox as illustrating his broad thesis that the law’s process of proof aims
at generating acceptable statements about past events and thus at projecting behavioral
norms to the public, rather than at reaching probable conclusions in a search for
truth:

Application of the more-probable-than-not test to each element produces
the most acceptable conclusion as to that element.  The conjunction of
these conclusions constitutes a story that is more probable than any other
story about the same elements.  Suppose, for example, that the elements of a
story are A and B, and A (70%) is more probable than not-A (30%), and B
(60%) is more probable than not-B (40%).  The conjunction (A & B) (42%)
may not be more probable than its negation (not-(A & B)) (58%).  But the
conjunction (A & B) (42%) is more probable than any other version: (A &
(not-B)) (28%), ((not-A) & B) (18%), or ((not-A) & (not-B)) (12%).  The
application of the more-probable-than-not standard of proof on an element-
by-element basis will produce the single most probable story.

Id. at 1389–90 (footnotes omitted). See generally J.S. COVINGTON, JR., THE STRUCTURE

OF LEGAL ARGUMENT AND PROOF 347–57 (2d ed. 2006) (discussing the misuses of
probability theory at trial).
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The implications are profound but boggling.  Allowing recovery
on a 36% showing of causation and fault is not only unfair but ineffi-
cient.  How embarrassing for the law!

For another boggle, ponder the apparent criticality of how
exactly the ancients (and moderns) divided our causes of action and
defenses into elements: the more subdivisions, the lower the conjunc-
tive probability that would produce victory.114  And yet:

Anyone who has ever litigated a real case knows the exact oppo-
site of the conjunction paradox is true: the more disputed elements
the plaintiff has to prove, the less likely the plaintiff is to prevail. . . .
[A]lthough it is possible that a particular plaintiff could obtain an
unjust verdict in a case with several disputed elements, [there is an
increased] probability that the jury will find at least one element to
be less likely than not.115

Admittedly, the conjunction paradox turns out to be not such a
serious problem in practice.  Only one element might be in dispute,
or the disputed elements might not be really independent.  The judge
might not clearly state, or the jury might not fully understand, the
proper element-by-element approach to the standard of proof.

Or, because humans might tend to construct a story for the whole
case rather than proceeding element-by-element, the fact-finder
might end up applying the standard of proof to the conjoined ele-
ments.  In fact, many psychologists agree that the fact-finder naturally
constructs such stories, although perhaps not in a very systematic man-
ner.116  The broadly accepted story model of evidence processing holds
that the fact-finder, over the trial process’s course, constructs from the
evidence the story that makes maximal sense; and the fact-finder then

114 See James A. Henderson, Jr. et al., Optimal Issue Separation in Modern Products
Liability Litigation, 73 TEX. L. REV. 1653, 1655–59, 1667–75 (1995).
115 David A. Moran, Jury Uncertainty, Elemental Independence and the Conjunction Para-

dox: A Response to Allen and Jehl, 2003 MICH. ST. L. REV. 945, 946–47, 950.
116 See generally JEFFREY T. FREDERICK, THE PSYCHOLOGY OF THE AMERICAN JURY

296–99 (1987) (providing a brief overview of the story model of evidence processing);
REID HASTIE ET AL., INSIDE THE JURY 22–23 (1983) (providing a brief summary of
empirical studies supporting the story model); Paula L. Hannaford et al., The Timing
of Opinion Formation by Jurors in Civil Cases: An Empirical Examination, 67 TENN. L. REV.
627, 629–32 (2000) (discussing “three predominant models of jury decision mak-
ing”); Jill E. Huntley & Mark Costanzo, Sexual Harassment Stories: Testing a
Story–Mediated Model of Juror Decision–Making in Civil Litigation, 27 LAW & HUM. BEHAV.
29, 29 (2003) (presenting research that “extends the story model to civil litigation and
tests a story-mediated model against an unmediated model of jury decision-making”);
Nancy Pennington & Reid Hastie, The Story Model for Juror Decision Making, in INSIDE

THE JUROR 192 (Reid Hastie ed., 1993) (detailing the story model and summarizing
empirical studies testing it).
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chooses, among the available decisions, the one that fits best with the
constructed story:

Several authors have recently proposed a model for juror deci-
sionmaking based on the concept of a story as an organizing and
interpreting schema.  The story model attempts to explain how
jurors organize and interpret the vast amount of information they
encounter at trial and apply the appropriate decision criteria. . . .

. . . The jurors construct a story adequately describing what
happened. At the conclusion of the trial, they construct the verdict
categories based on the instructions given by the judge.  The indi-
vidual juror arrives at his decision by determining the best match
between his story and the available verdict categories.  The task of
the jury in deliberations then becomes one of selecting a story from
among those offered by the jurors and fitting it to the available ver-
dict options.117

If the jurors construct a story (or stories118) for the whole case, or
otherwise cognitively process the entirety while the trial progresses,
and then the judge instructs on standard of proof, it might be that the
jurors actually apply the standard to the whole claim or defense.  It
might also be that, being human, a judge when acting as fact-finder
proceeds in essentially the same manner, testing whether the already
conjoined elements are more likely than not.

Indeed, by providing obscure instructions only at the end of oral
trials, the law seems determined to encourage overall consideration
and to discourage applying the standard of proof element-by-element.
Although the judge does instruct literally in element-by-element
terms,119 this may work only to encourage the jurors’ detailed evalua-

117 FREDERICK, supra note 116, at 296–97 (citations omitted). R

118 Compare Reid Hastie, What’s the Story? Explanations and Narratives in Civil Jury
Decisions, in CIVIL JURIES AND CIVIL JUSTICE 23, 31–32 (Brian H. Bornstein et al. eds.,
2008) (expanding the theory to allow for a party’s multiple stories), with Michael S.
Pardo, The Nature and Purpose of Evidence Theory, 66 VAND. L. REV. (forthcoming 2013),
available at http://ssrn.com/abstract=2060340 (discussing the theory’s difficulties in
handling multiple stories).
119 3 KEVIN F. O’MALLEY ET AL., FEDERAL JURY PRACTICE AND INSTRUCTIONS: CIVIL

§ 104.01 (6th ed. 2011):
Plaintiff has the burden in a civil action, such as this, to prove every

essential element of plaintiff’s claim by a preponderance of the evidence.  If
plaintiff should fail to establish any essential element of plaintiff’s claim by a
preponderance of the evidence, you should find for defendant as to that
claim.

See Allen & Jehl, supra note 110, at 897–904 (criticizing Dale A. Nance, Commentary, R
A Comment on the Supposed Paradoxes of a Mathematical Interpretation of the Logic of Trials,
66 B.U. L. REV. 947, 949–51 (1986) (finding this instruction ambiguous)).
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tion of the evidence and to stress the requirement that any story must
contain all of a series of elements—just as many evidence rules may
work to brake any undesirable tendency of the fact-finder to rush
toward creating a story.120

So, the conjunction paradox may not inflict great practical
effects.  Nonetheless, the big theoretical problem of the conjunction
paradox will unavoidably pose at least some practical difficulties.  The
law sometimes enforces its element-by-element theory and thereby
impedes the holistic practice.  An obvious example would be when the
judge requires a special verdict that asks the jury to find each element
by a preponderance.121  The conjunction paradox therefore remains
troubling, and theorists twist themselves into pretzels trying to explain
it away.

It would be troubling, however, only if theory really calls for the
product rule.  But theory does not.  Instead, it invokes the MIN rule.
The truth of the conjunction equals the minimum of the truths of the
elements.  If each element is more likely than not, then the truth of
the conjunction is more likely than not.  To use the above example, if
the plaintiff shows that fault is .60 true and that causation is .60 true,
then he has shown to .60 that the defendant both acted negligently
and caused the injury.

Thus, there is no conjunction paradox.  It implodes under the
force of fuzzy logic.  The MIN operator provides that belief in the con-
junction will match the least likely element, which has already passed
the standard of proof.  The MAX operator meanwhile indicates that
belief in the negative of the conjunction, that is, in the disjunction of
each element’s negation, will never reach equipoise.  The story of lia-
bility will not only be the most believable story, but will be more
believable than all the stories of non-liability combined.

Comfortingly, under the MIN rule, applying the standard of proof
element-by-element works out to be equivalent to applying it to the whole con-
joined story.  So, if the fact-finder actually does follow the story model,
that practice would not directly endanger the standard of proof.  The
apparent criticality of the number of elements melts away too.
Because the MIN rule applies to each set of evidence to be conjoined,

120 See Bruce Ching, Narrative Implications of Evidentiary Rules, 29 QUINNIPIAC L.
REV. 971 (2011) (discussing a narrative perspective in persuasion, and for evidentiary
rules such as hearsay and party admissions); Doron Menashe & Mutal E. Shamash,
The Narrative Fallacy, 3 INT’L COMMENT. ON EVIDENCE iss. 1, art. 3 (2006) (using narra-
tive theory to criticize holistic evidence theory).
121 But cf. Elizabeth G. Thornburg, The Power and the Process: Instructions and the

Civil Jury, 66 FORDHAM L. REV. 1837, 1857–63 (1998) (questioning whether a special
verdict actually changes the jury’s decision-making practice).
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it does not matter where the law draws formal lines between elements,
or whether the elements are independent or interdependent.  Nor
does it matter if I sloppily labeled identity as an “element” in my
examples above.122

Moreover, the proof process within elements is not dissimilar to
the proof process between elements.  Within elements, the fact-finder
uses intuitive techniques in a non-quantitative and approximate fash-
ion.  Between elements, and for separate facts within elements, the
fact-finder uses the fuzzy operator for conjunction that works in a sim-
ilar style.

The law does seem to know what it is doing, then.  Whenever it
phrases its instruction to require applying the standard of proof ele-
ment-by-element, it is instructing to apply the MIN operator.  But do
actual fact-finders apply the MIN operator as they should and as the
law tells them to do?  We do not know.  Some experimental evidence
arguably suggests that the lay person tends to apply the product rule
rather than the MIN operator.123  Nevertheless, no sign exists that
fact-finders in the legal system are using the product rule.  After all, a
concern that they were ignoring the product rule generated the
unfounded fear of the conjunction paradox in the first place.

Theorists also claim there is a converse paradox, involving multi-
ple theories.  These observers lament that the law denies relief to a

122 See COHEN, supra note 102, at 267 (“So on the inductivist analysis, if the plain- R
tiff gains each of his points on the balance of probability, he can be regarded as
gaining his case as a whole on that balance . . . , without any constraint’s being
thereby imposed on the number of independent points in his case or on the level of
probability at which each must be won.”).
123 See Gregg C. Oden, Integration of Fuzzy Logical Information, 3 J. EXPERIMENTAL

PSYCHOL.: HUM. PERCEPTION & PERFORMANCE 565, 568–572 (1977).  His experiment
involved having students judge the degree of truthfulness of statements like “a chair is
furniture” and “a pelican is a bird,” and asking them for the degree to which both
statements together were true.  The students seemed to use the product rule rather
than the MIN rule.  But it seems to me that the students could have interpreted these
statements as verifiably being either completely true or completely false, thus making
the product rule appropriate.  Moreover, other experiments indicate that people do
use fuzzy operators. See Rami Zwick, David V. Budescu & Thomas S. Wallsten, An
Empirical Study of the Interpretation of Linguistic Probabilities, in FUZZY SETS IN PSYCHOLOGY

91, 114–16 (Tamás Zétényi ed., 1988) (indicating that people do not use the product
rule naturally).  In any event, in the legal system any human failing to conjoin prop-
erly would be offset by the human tendency to construct a story for the whole case
instead of proceeding element-by-element. Cf. Tversky & Kahneman, supra note 90, R
at 19 (discussing biases that tend to ignore conjunction); Amos Tversky & Derek J.
Koehler, Support Theory: A Nonextensional Representation of Subjective Probability, in
HEURISTICS AND BIASES, supra note 90, at 441 (same). R
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supposedly deserving plaintiff (or to a defendant with multiple
defenses almost proved):

Consider a case involving three different legal theories and three
different factual foundations.  Plaintiffs deserve to win if one of the
stories embodying one legal theory is true; defendants deserve to
win only if all of their competing stories are true (for if this is false,
one of the plaintiff’s stories is true).  For example, assume the plain-
tiff has alleged defective design, defective manufacture, and failure
to warn theories.  If the probability of each is .25, the “probability”
of each not being true is .75, but, the probability of at least one
being true is 1-.753=.58, and perhaps plaintiff should win, even
though the individual probabilities of each being false is .75.124

However, this paradox implodes under the force of fuzzy logic too.
The MAX rule indicates that the plaintiff proved his case to only .25
and so should lose, just as the plaintiff does lose under current law.

Let me use this multiple-theory, or aggregation, paradox in trying
further to explain what is not intuitive, and what is therefore difficult
to explain.  Imagine a claim A that is 25% likely to succeed and an
independent claim B that is 40% likely to succeed.  I am saying that

124 Allen & Jehl, supra note 110, at 939; see Massachusetts v. U.S. Dep’t of Health & R
Human Servs., 682 F.3d 1 (1st Cir. 2012) (striking down DOMA on both equal protec-
tion and federalism grounds), noted in Mike Dorf, Is the First Circuit’s Opinion in the
DOMA Case Insufficiently “Fuzzy”?, DORF ON LAW (June 4, 2012, 12:30 AM), http://
www.dorfonlaw.org.

A recent article attacks the law’s general refusal to aggregate the probabilities of
independent claims and defenses, even arguing for conviction upon the basis of a
number of criminal offenses almost proved.  Porat & Posner, supra note 70. Compare R
Alon Harel & Ariel Porat, Aggregating Probabilities Across Cases: Criminal Responsibility for
Unspecified Offenses, 94 MINN. L. REV. 261, 261–62 (2009) (“Should a court convict a
defendant for an unspecified offense if there is no reasonable doubt that he commit-
ted an offense, even though the prosecution cannot prove his guilt as to a particular
offense beyond a reasonable doubt?  Stated otherwise, is committing an offense suffi-
cient for a conviction or must a prosecutor establish what this offense is to justify a
conviction?  This Article contends that, under certain conditions, a prosecutor should
not have to establish the particular offense committed by a defendant—proof that the
defendant committed an offense should be sufficient.”), with Frederick Schauer &
Richard Zeckhauser, On the Degree of Confidence for Adverse Decisions, 25 J. LEGAL STUD.
27, 41-47 (1996) (conceding the probability argument, but arguing that the criminal
law still should not convict for reasons of abundant caution).  My position is that the
paradox that motivated their whole article does not exist.  The law should not, and
does not, aggregate.  Their article’s cited exceptions, where the law does seem to
aggregate (for example, alternative or market share liability), actually constitute
changes to the substantive law in a manner comparable to imposing strict liability,
rather than resulting from an odd application of traditional probability to the stan-
dard of proof. See Kevin M. Clermont, Aggregation of Probabilities and Illogic, 47 GA. L.
REV. 165 (2012).
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the likelihood of (A OR B) is equal to that of the likeliest of A and B,
that is, 40%.  It is easy to say that I am being obtuse, because anyone
can intuit that the probability of A and B’s union must be higher.  But
the fact that the law says otherwise, and that a widely accepted logic
system says otherwise, should give pause to intuition.

First, imagine a claim A for tort, where the defendant did acts
that were 25% bad, and an independent claim B for contract, where
the defendant did acts that constituted 40% of what would be an
unquestionable breach.  These are members of fuzzy sets.  The
breaching quality of the acts has no bearing on the tortiousness of the
acts.  Then we can say only that the defendant went 40% of the way
toward liability.  The 25% showing has no effect on the 40% showing.
The “likelihood” of their union is 40%.

Second, imagine a ball A drawn from an urn with only 25% black
balls among white balls, and a ball B drawn from another urn with
40% black balls.  The odds that one of them is black (and let us say
that black represents liability), when the drawn balls are both
revealed, are 55% by De Morgan’s rule.  In a sense, the act of
revealing the balls to be white or black affects the odds, because the
balls must be either white or black and only one has to be black.  If
one turns up black, this takes the pressure off the other’s being black.

Third, imagine a claim A for tort, where the defendant was actu-
ally 25% likely to have done the bad tortious acts alleged, and an inde-
pendent claim B for contract, where the defendant was actually 40%
likely to have done the bad breaching acts alleged.  Assume that all
available evidence would not change those numbers, which is what I
mean by “actually.”  Is this situation more like the first or the second
situation?  All our intuitions, honed by life-long exposure to tradi-
tional probability theory, point us to the second.  But the real world of
uncertainty and imprecision makes the appropriate analogy the first
situation.  The likelihood that A exists has no effect on whether B
exists.  More complete evidence will not arrive to change the likeli-
hoods—and we cannot pull off a veil to show what really happened,
we will not get to see if the “ball” is truly black, we will never get to
reduce the world to bivalence.  It was the reduction to bivalence that
affected the joint odds in the second situation.  The likelihoods in the
third situation will never be anything but 25% and 40%, unlike the
drawn balls whose probabilities will change upon unveiling.  We have
nothing more than 25% of a claim and 40% of another claim, when
only a provable claim justifies liability.  If we can never convert the
likelihood of a claim to one or zero, then all we can say is that the
defendant is liable to a certain degree.  Thus, when we can never
know with certainty what happened, a likelihood of occurrence is not
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different from a degree of misfeasance: now, likelihood of occurrence
is not a traditional probability, it is a fuzzy set.

III. ANALYZING BELIEFS

The ultimate focus on fuzzy provability pushed traditional
probability farther into the background, so setting the stage for a shift
of focus onto beliefs as being at the core of the standards of proof.
This Part will introduce belief functions into the mix, in order better
to represent how imperfect evidence keeps fact-finders from commit-
ting all of their belief.  Then, this Part will use this theory to explain
why the law’s initial burden of production starts the fact-finders at
point zero.  While the key idea introduced heretofore has been multi-
valence, the key idea henceforth will be the non-additivity of beliefs.

A. Shafer’s Belief Functions

1. Basics of Theory

I have already implicitly advocated that we treat the degree of S’s
truth, which is a degree of membership in the set of true facts, as a
degree of belief in S as a true proposition.  The broad version of the
theory of belief functions will now give us a handle on how to manipu-
late such beliefs.125  It will also provide us with a better mental image
for representing indeterminacy.126

In fact-finding, I therefore contend, we should not ask how likely
S is but rather how much we believe S to be a real-world truth based
on the evidence, as well as how much we believe notS—while remain-
ing conscious of indeterminacy and so recognizing that part of our
belief will remain uncommitted.  Beliefs can range anywhere between
0 and 1.  If the belief in S is called Bel(S), then 0 ≤ Bel(S) ≤ 1.

Consider belief function theory’s treatment of a single factual
hypothesis.  Take as an example the issue of whether Katie is dead or
alive, with S representing death.  Although you have no tangible evi-
dence, three witnesses said she is dead.  One seems somewhat credi-
ble.  But you think that another saw a different woman’s body, which
discounts the evidence of death but gives no support to her being
alive.  And you think that the third was lying as part of a cover-up of
her escape from captivity, which is compatible with both S and notS

125 See SHAFER, supra note 23, at 35–37. R
126 See Liping Liu & Ronald R. Yager, Classic Works of the Dempster–Shafer Theory of

Belief Functions: An Introduction, in CLASSIC WORKS OF THE DEMPSTER–SHAFER THEORY

OF BELIEF FUNCTIONS, supra note 55, at 1, 2–19 (recounting also the history of belief R
function theory).



\\jciprod01\productn\N\NDL\88-3\NDL301.txt unknown Seq: 55  4-APR-13 15:47

2013] the  killer  logic  beneath  the  standards  of  proof 1115

and so gives some thin support to her being alive.  In sum, this evi-
dence supports your .5 belief that she is dead, or Bel(S).  That evi-
dence also supports your weaker belief that she is alive, with Bel(notS)
coming in at .2.  That is, Bel(notS) is not determined by the value of
Bel(S).  The remaining .3 is indeterminate, meaning she could be
either alive or dead because the evidence is imperfect.  The defects in
evidence might be probative, affecting Bel(S) and Bel(notS); but the
defects might be nonprobative, so that they just leave some belief
uncommitted.  (This example actually involves a so-called power set of
four beliefs: S, notS, neither S nor notS, and either S or notS.  The
belief in the “null” of neither alive nor dead is set by definition to be
0.  The belief in the “catchall” of either alive or dead is 1.0.)

0

Plausibility of Katie’s death

1

Bel(S) Bel(notS)

Belief is sometimes called the lower probability.  Bel(S) is the
extent to which you believe Katie to be dead.  The upper probability
bound represents “possibility” in Zadeh’s terminology or “plausibility”
in Shafer’s.127  It is the extent to which you think her being dead is
plausible, that is, the sum of the affirmative belief plus the indetermi-
nate belief.  The plausibility that she is dead is .8, being .5 + .3.  (A
traditionally expressed probability of her being dead would fall some-
where within the range from the lower to the upper probability.)  The
plausibility that she is alive totals .5, being .2 + .3.  Plausibility equals
one minus the belief in the opposite.

Belief functions thus harness the idea of imprecise probability to
capture indeterminacy.  Although they can be used with ordinary
expressions of probability, combining belief functions with fuzzy
logic’s degrees of truth and its operators makes an even bigger step
toward understanding.128  The resultant beliefs can be expressed, if

127 See Barnett, supra note 55, at 200–01 (providing a neat mental image for these R
bounds); A. P. Dempster, Upper and Lower Probabilities Induced by a Multivalued Map-
ping, 38 ANNALS MATHEMATICAL STAT. 325 (1967); L.A. Zadeh, Fuzzy Sets as a Basis for a
Theory of Possibility, 1 FUZZY SETS & SYS. 3 (1978).
128 See Dubois & Prade, supra note 99, at 375 (arguing for the basic compatibility R

of the two approaches); John Yen, Generalizing the Dempster–Shafer Theory to Fuzzy Sets,
in CLASSIC WORKS OF THE DEMPSTER–SHAFER THEORY OF BELIEF FUNCTIONS, supra note
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expression is ever necessary, as coarsely gradated beliefs.  In addition
to the benefits of utilizing natural language, these terms capture the
uncertainty and imprecision in determining the belief.  Thus, in lieu
of expressing beliefs in terms of decimals, one should use the coarse
gradations of (1) slightest possibility, (2) reasonable possibility, (3)
substantial possibility, (4) equipoise, (5) probability, (6) high
probability, and (7) almost certainty.

In the end, the representation of findings in the form of beliefs
captures the effect of imperfect evidence, which was a rallying cry of
Baconian theorists.129  The shift from probability to belief is also a
slight nod to the civil-law emphasis on inner belief as captured by its
intime conviction standard,130 and to the frequent cris de coeur of theo-
rists who lament any intrusion of probabilistic mathematics into the
very human process of proof.131  Finally, belief functions can make a
contribution to understanding law independently of fuzzy theory, as I
shall try to show.

55, at 529 (showing how to form beliefs about membership in a fuzzy set); cf. SCHUM, R
supra note 22, at 266–69 (observing that one can fuzzify belief functions). R
129 See COHEN, supra note 102, at 49–57, 245–64 (developing, as an alternative to R

Pascalian (or mathematicist) probability, a Baconian (or inductive) theory of
probability).  Baconian theory tries to look not only at the evidence presented, but
also at the evidence not available.  It makes evidential completeness a key criterion, and
thereby stresses an important concern.
130 See Clermont & Sherwin, supra note 32; Kevin M. Clermont, Standards of Proof R

in Japan and the United States, 37 CORNELL INT’L L.J. 263 (2004); Clermont, supra note
31; Wright, supra note 100; Richard W. Wright, Proving Causation: Probability Versus R
Belief, in PERSPECTIVES ON CAUSATION 195 (Richard Goldberg ed., 2011).  With their
emphasis on “conviction” in the intime conviction standard, the civil-law countries sig-
nal their devotion to belief, albeit a belief seemingly built upon a binary world view
(and perhaps a belief compared to an absolute threshold inherited from the criminal
model).  Such an approach fit better with an inquisitorial model than it did with an
adversarial model, allowing it to persist for centuries.  But its survival until today may
rest instead on the civil-law system’s desire to enhance the appearance of legitimacy.
131 See, e.g., Jaffee, supra note 45, at 934–51 (attacking the use of probability in R

analyzing proof); Tribe, supra note 2 (writing the classic version of the lament, in R
which Professor Tribe stressed not only the risk of misuse of mathematical tech-
niques, including inaccurate meshing of numerical proof with soft or unquantifiable
variables, but also the undercutting of society’s values, including the dehumanization
of the legal process); Adrian A.S. Zuckerman, Law, Fact or Justice?, 66 B.U. L. REV. 487,
508 (1986) (arguing that probabilistic assessment diminishes “the hope of seeing jus-
tice supervene in individual trials,” while seeing fact-finding as an individualized but
value-laden process).
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2. Negation Operator

By traditional probability theory, the probability of a hypothesis’s
negation equals 1 minus the probability of the hypothesis.  If Katie is
60% likely dead, she is 40% likely alive.

Under the scheme of belief functions, Bel(S) and Bel(notS) do
not necessarily add to 1, because normally some belief remains
uncommitted.  Thus, for Katie, Bel(S)=.5 and Bel(notS)=.2, so the
sum of determinate beliefs adds to .7.  We are now squarely in the
realm of non-additive beliefs.

The complement of Bel(S) equals (1 - Bel(S)), but it gives the
plausibility of notS, not the belief in notS.  Indeed, the plausibility of
notS equals (Bel(notS) + uncommitted belief).  Hence, there is a big
difference between the complement and the belief in the negation:
the difference is the uncommitted belief.  Belief function theory thus
utilizes the very useful distinction between a lack of belief and a disbe-
lief.  After all, disbelief and lack of belief are entirely different states of
mind.132

3. Lack of Proof

Traditional probability encounters legendary difficulties with a
state of ignorance.133  The reason is that it cannot distinguish between
lack of belief and disbelief.  In classical terms, S=0 means that S is
impossible.  And it means that notS is certain.  No amount of evidence
could alter an impossibility or a certainty into a possibility under
Bayes’ theorem.134  As a way out, probabilists sometimes assert that the
ignorant inquirer should start in the middle where the probabilities of
S and notS are both 50%.  But this trick does not accord with the
actual probabilities, and it produces inconsistencies when there are
more than two hypotheses in play.135

Meanwhile, one of the great strengths of belief function theory is
that it well represents a state of ignorance.136  An inquirer, if ignorant,
starts at zero, not at a 50% belief.  When Bel(S)=0, it does not mean

132 See Bellman & Giertz, supra note 77, at 155–56 (showing that negation can R
have multiple meanings).
133 See, e.g., Richard Lempert, The New Evidence Scholarship: Analyzing the Process of

Proof, 66 B.U. L. REV. 439, 462–67 & n.60 (1986) (noting that employing 1:1 as the
appropriate odds for someone who is ignorant of the true facts can cause many
problems).
134 See Brilmayer, supra note 5, at 686–88. R
135 See supra note 45 and accompanying text. R
136 See SHAFER, supra note 23, at 22–24 (exploring the role of the “representation R

of ignorance” in belief functions).
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that S is so highly unlikely as to be impossible. It means there is no
evidence in support.  Accordingly, the inquirer starts out with every-
thing indeterminate, because the lack of evidence makes one with-
hold all of one’s belief. Although Bel(S)=0, Bel(notS) equals zero too.
The uncommitted belief is the entirety or 1, meaning that S is com-
pletely plausible, as is notS.  In other words, the inquirer does not
believe or disbelieve S.  Belief function theory thus utilizes the very
useful distinction between disproof and lack of proof.

B. Legal Application: Burden of Production

Let me start with some background on how the law has tradition-
ally viewed the burden of proof, say, in a jury trial.  The burden of
proof dictates who must produce evidence and ultimately persuade
the fact-finder on which elements of the case.  Burden of proof thus
encompasses two concepts: burden of production and burden of per-
suasion.  The burden of production might require either party at a
given time during trial to produce evidence on an element or suffer
the judge’s adverse determination on that element; one party has the
initial burden of production on any particular element, but that bur-
den may shift during the trial if that party produces certain kinds or
strengths of evidence.  The burden of persuasion requires a certain
party ultimately to persuade the fact-finder of the truth of an element
or suffer adverse determination on that element.

Imagine a single disputed issue of typical fact on which the plain-
tiff bears the initial burden of production and the burden of persua-
sion.  Then imagine a grid representing the judge’s disagreement with
a potential verdict for the plaintiff, or equivalently the judge’s view of
likelihood of error in such a verdict, with disagreement or likelihood
decreasing from one on the left to zero on the right.137  It is impor-
tant to realize that this diagram represents the likelihood of jury error
in finding that the disputed fact exists, not the judge’s view of the
evidential likelihood that the disputed fact exists.  In other words, this
diagram represents the judge’s thought process in externally oversee-
ing the jury that acts as fact-finder, not the judge’s thought process as
if the judge were finding facts.  Alternatively stated, this diagram rep-
resents the burden of production, not the burden of persuasion.

137 See 9 JOHN H. WIGMORE, EVIDENCE § 2487 (James H. Chadbourn rev., 1981); cf.
John T. McNaughton, Burden of Production of Evidence: A Function of a Burden of Persua-
sion, 68 HARV. L. REV. 1382 (1955) (offering alternative diagrams).
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Judge Jury

X Y

Judge

The plaintiff in the imagined case starts at the left of the diagram.
If he presents no evidence, the judge would ordinarily grant a motion
for judgment as a matter of law against him.  He is consequently
bound to go forward with his evidence until he satisfies the judge that
a reasonable jury would be warranted in finding for him.  That is, he
must get to line X in order to make a jury question of the imagined
single issue of fact, doing so by presenting evidence.  The plaintiff’s
getting to or beyond line X means that although the judge might still
disagree with a verdict for the plaintiff, the judge thinks a reasonable
jury could find that the plaintiff sustained his persuasion-burden, and
therefore the judge will hold that the plaintiff sustained his produc-
tion-burden.  If the plaintiff does not get to line X, that means that
the judge would so vehemently disagree with a verdict for the plaintiff
as to consider the jury irrational, and so the judge can grant the
motion for judgment as a matter of law.  Line X, again, represents the
judge’s view on the limit of rationality in the jury’s finding for the
plaintiff, rather than the judge’s view of the evidential likelihood that
the disputed fact exists.  For example, if the judge disbelieved all of
the plaintiff’s abundant evidence, but still acknowledged that a rea-
sonable jury could believe it, then the judge should rule that the
plaintiff has carried his production-burden, because a reasonable jury
could conclude that the plaintiff sustained his persuasion-burden.

This diagrammatic scheme works pretty well to represent the
law’s approach.  Moreover, the diagram helps in understanding other
concepts and special rules.  A permissive inference (and res ipsa loquitur
is one in the view of most courts138) describes an inference that a jury

138 See John Farley Thorne III, Comment, Mathematics, Fuzzy Negligence, and the
Logic of Res Ipsa Loquitur, 75 NW. U. L. REV. 147 (1980) (justifying the res ipsa loquitur
doctrine by use of fuzzy logic).
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is authorized but not required to draw from certain evidence; in other
words, the inference satisfies the plaintiff’s production-burden by get-
ting the case to line X, although not beyond line Y.  A true presumption
(such as the presumption against suicide as the cause of death) shifts
the burden of production to the opponent after the introduction of
the evidential premise; in other words, the presumption puts the case
to the right of line Y and so requires the jury to find the presumed
fact, unless the opponent introduces enough evidence to carry her
production-burden and push the case at least back into the jury zone
between Y and X.139

Among special rules, certain kinds of evidence will not satisfy an
initial burden of production.  To satisfy that burden, the burdened
party cannot rely on the opponent’s failure to testify,140 on mere dis-
belief of the opposing testimony,141 or on demeanor evidence drawn
from the opponent’s testimony.142  Similarly, naked statistical evi-
dence normally will not satisfy the initial burden of production.143

However, any of these kinds of evidence is perfectly proper to intro-
duce as a supplement to positive evidence that satisfies the initial bur-
den of production.144  The idea behind these special rules is that they
are necessary to protect the notion of an initial burden of production,
which serves to facilitate early termination of weak claims or defenses,
to safeguard against irrational error, and to effectuate other process
and outcome values.145  In the absence of these special rules, any bur-

139 See FED. R. EVID. 301.
140 See Stimpson v. Hunter, 125 N.E. 155, 157 (Mass. 1919) (“[T]he failure of the

defendant and his son to testify although present in court was not equivalent to
affirmative proof of facts necessary to maintain the action.”).
141 See Cruzan v. N.Y. Cent. & Hudson River R.R. Co., 116 N.E. 879, 880 (Mass.

1917) (“Mere disbelief of denials of facts which must be proved is not the equivalent
of affirmative evidence in support of those facts.”).
142 See Dyer v. MacDougall, 201 F.2d 265, 269 (2d Cir. 1952) (holding that

although demeanor evidence is probative, it does not suffice to escape a directed
verdict).
143 See Guenther v. Armstrong Rubber Co., 406 F.2d 1315, 1318 (3d Cir. 1969)

(dictum) (saying, in a case where the plaintiff had been injured by an exploding tire,
that a 75 to 80% chance it came from the defendant manufacturer was not enough
for the case to go to the jury).  For a more complete consideration of statistical evi-
dence and its ultimately non-paradoxical nature, see RICHARD H. FIELD, BENJAMIN

KAPLAN & KEVIN M. CLERMONT, MATERIALS FOR A BASIC COURSE IN CIVIL PROCEDURE

1352–56 (10th ed. 2010) (explaining how a fact-finder converts statistical evidence
into a belief).
144 See Baxter v. Palmigiano, 425 U.S. 308, 316–20 (1976) (treating failure to tes-

tify as sufficient evidence).
145 See Robert S. Summers, Evaluating and Improving Legal Processes—A Plea for “Pro-

cess Values,” 60 CORNELL L. REV. 1, 4 (1974) (arguing that a legal process can be both a
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dened party could produce enough evidence to reach the jury, this
evidence possibly being merely in the form of silence, disbelief,
demeanor, or general statistics (such as that the defendant manufac-
tured 60% of the supply of the injury-causing device of unknown prov-
enance).  Perhaps we harbor a special fear of the jury’s mishandling of
such evidence when undiluted by other admitted evidence and conse-
quently rendering an unreasoned verdict for the proponent based
either on prejudice without regard to the evidence or on undue defer-
ence to such bewildering evidence.  To avoid such an outcome, and to
ensure that the burden of production means something, the judge
should require sufficient evidence of other kinds.  Once the propo-
nent clears that hurdle, the tribunal should allow the feared evidence
its probative effect.

At first glance, this whole accepted scheme seems fairly compati-
ble with traditional probability.  One diagrammatic qualification com-
ing from the new logic would be that representing the judge’s view of
jury error as a fuzzy interval rather than a point would better capture
reality.

But the biggest difficulty for traditional probability is fixing the
starting point.  The probabilist might assume that when you know
nothing, the rational starting point is 50% (thus, many a Bayesian
would make 50% the initial prior probability).  Indeed, some experi-
mental evidence indicates that lay people do tend to start at 50%.146

Then, if the plaintiff offers a feather’s weight of evidence, he would
thereby carry not only his burden of production but also his burden of
persuasion.

The real-life judge, however, hands only defeat to the plaintiff
with nothing more than a feather’s weight of evidence, and does so by
summary means.  Why is that?  The law says that we should start not at
50% but at the far left, and to get to X requires more than a feather’s
weight.  The proper representation of lack of proof is zero belief in
the plaintiff’s position, but also zero belief in the defendant’s position.
The full range of belief is properly uncommitted.  That insight makes
sense of the notion of the burden of production.  It also suggests that,
in starting at zero belief, the law is proceeding by belief function
theory.

means to good results and a means to serve process values such as “participatory gov-
ernance, procedural rationality, and humaneness”).
146 See Anne W. Martin & David A. Schum, Quantifying Burdens of Proof: A Likelihood

Ratio Approach, 27 JURIMETRICS J. 383, 390–93 (1987) (surveying a small sample of
students for their odds of guilt used as the prior probability, which turned out to be
1:1 or 50%).
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IV. APPLYING STANDARDS

This Part will introduce the idea of comparing belief and disbe-
lief of a fact, which the fact-finder would do after putting any indeter-
minate belief aside.  Then, this Part will demonstrate how the law
already conceives of its three standards of proof as different ways of so
comparing belief and disbelief.

A. Comparison of Beliefs

My conceptualization has thus far led me to think that the law
should not and does not employ the traditional academic view of the
proof process resting on a two-valued logical approach.  Fact-finders
instead determine their beliefs as fuzzy degrees of real-world truth
based on the evidence, just as the law expects of them.  Eventually
they end up with Bel(S) and Bel(notS), falling between 0 and 1, but
not necessarily adding to 1.  What then do they do?

So, finally, I come to the matter of applying a standard of deci-
sion.  The law dictates that fact-finders decide by subjecting their fuzzy
beliefs to a standard of proof in order to come to an unambiguous
output.  That is, at this point the law forces fact-finders back into what
looks like a two-valued logic, by forcing them to decide for one party
or the other.147  Such disambiguation is not a practice unique to law.
All fuzzy computer programs end with a step that produces an unam-
biguous output, a step called defuzzification.148

Application of a standard of proof is a different step from eviden-
tial argument; the academic disputes as to standards do not overlap
with the disputes over how to assess, conjoin, and analyze evidence.149

147 A separable question is whether the law should instead deliver partial relief
following partial proof. See ENDICOTT, supra note 10, at 72–74.  The answer is not R
obviously affirmative. See David Kaye, The Limits of the Preponderance of the Evidence Stan-
dard: Justifiably Naked Statistical Evidence and Multiple Causation, 1982 AM. B. FOUND.
RES. J. 487 (showing current law’s economic superiority to an expected-value
approach that would award damages proportional to probabilistic certainty).  After
cataloging the prevalence of fuzzy concepts in law, Professor Katz concludes that law
is correct to draw lines in the fuzz and so separate all-or-nothing remedies; he argues
that law must establish discontinuities in order to retain its rational coherence. See
KATZ, supra note 67, at 157–81.  Most significantly, I add that partial relief would have R
to contend with the difficulty that the system does not, and logically could not, charge
the fact-finder to find upon imperfect evidence the degree to which the plaintiff is
right, as I next develop.
148 See KOSKO, supra note 10, at 172 (describing the step in fuzzy computer R

systems).
149 See Peter Tillers & Jonathan Gottfried, Case Comment—United States v. Cope-

land, 369 F. Supp. 2d 275 (E.D.N.Y. 2005): A Collateral Attack on the Legal Maxim That
Proof Beyond a Reasonable Doubt Is Unquantifiable?, 5 LAW PROBABILITY & RISK 135, 142
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Psychologists have contributed almost nothing here,150 leaving the dis-
pute to logicians so far.

As to the psychology involved, I assume only that people, if told to
do so, can apply a simple standard of proof imposed by law.  Similarly,
in the absence of studies to the contrary, I believe jurors and others
will try to do so.  Thus, it matters what the law says about standards.

On the logic front, I contend that speaking in terms of two-valued
logic tends to mislead on standards, just as it does elsewhere.  Admit-
tedly, the determined theorist could pursue the two-valued image of
traditional probability.  Then the ultimate task of applying a standard
of proof would unavoidably involve placement on a scale of
likelihood.151

A better understanding of standards of proof would result from
thinking in terms of many-valued logic and belief functions, however.
Even though decision-making requires converting from a many-valued
logic to an output that sounds two-valued, the law does not need to
require enough evidence to make the fact more likely than 50% or
whatever.  The path to decision might involve only comparing Bel(S)
and Bel(notS) while ignoring the indeterminate belief.  All the fact-
finder need do is compare the strengths of belief and disbelief.  By
requiring only a comparison, belief functions would never require
placement on a scale of likelihood.152

B. Legal Application: Burden of Persuasion

1. Traditional View

In going from discussing the burden of production to explaining
the academic view of the burden of persuasion, I need to use a differ-
ent diagram, one that represents the internal thought process of the

(2006) (observing the difference between processing evidence and applying stan-
dards of proof); cf. Pardo, supra note 118, at 8 (calling these two stages the micro-level R
and the macro-level of proof).  Two Belgian scholars helpfully elaborated belief func-
tions to distinguish the formulation of beliefs during a “credal” stage (from the Latin
for believe) and decision-making during the “pignistic” stage (from the Latin for a
bet).  Philippe Smets & Robert Kennes, The Transferable Belief Model, in CLASSIC WORKS

OF THE DEMPSTER–SHAFER THEORY OF BELIEF FUNCTIONS, supra note 55, at 693. R
150 See Clermont, supra note 31, at 477, 485 (recounting the state of psychological R

knowledge on standards of proof).
151 See, e.g., Brown v. Bowen, 847 F.2d 342, 345 (7th Cir. 1988) (“[T]he trier of

fact rules for the plaintiff if it thinks the chance greater than 0.5 that the plaintiff is in
the right.”).
152 See Smith, supra note 71, at 503 (describing a betting scheme based on such R

comparison). For the mathematics involved, see Smets & Kennes, supra note 149, at R
703–11.
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fact-finder in ultimately weighing the evidence.  The grid now mea-
sures the fact-finder’s view of the evidential likelihood that the dis-
puted fact exists, with likelihood increasing from 0% on the left to
100% on the right.

π loses π wins

50%

The plaintiff in an imagined civil trial again starts at the left.  By
presenting evidence on the issue, he must get beyond the midpoint to
win.  That is, he must show that it is more likely than not that the
disputed fact exists.  If, after the plaintiff has given his best shot, the
fact-finder thinks that he has not passed the 50% line, then the fact-
finder should decide for the defendant.

A necessary qualification is that even under this traditional view,
this diagram serves mainly as an impetus to thinking about these mat-
ters, rather than as a source of definitive statements thereon.  For
example, the diagram does not mean that a 50% line exists in reality.
The psychological truth is that equipoise is more of a zone, or range
of probabilities, than a line.  A range of evidential states may strike the
fact-finder as evenly balanced.153

That equipoise is a zone means that the burden of persuasion will
affect many more cases than those in which the conflicting evidence
results precisely in a dead heat.  The fact-finder will rely on the bur-
den of persuasion more often than one might imagine.  Also, how the
law frames an issue—whether the plaintiff or the defendant bears the

153 See United States ex rel. Bilyew v. Franzen, 686 F.2d 1238, 1248 (7th Cir. 1982)
(stressing importance of the persuasion burden and observing that “a judge or a jury
can experience only a small, finite number of degrees of certainty . . . .  Thus cases
when the evidence . . . seem[s] in balance are not unique among some infinite variety
of evidentiary balances, but instead are among a much smaller number of [ranges of]
possibilities that may be perceived by the fact-finder.”); Clermont, supra note 20, at R
1119 n.13, 1122 n.36, 1147–48; Cohen, Conceptualizing Proof, supra note 30, at 90–91;
Cohen, Confidence in Probability, supra note 30, at 418–19.
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brunt of nonpersuasion of a fact, that is, whether the plaintiff or the
defendant appears to start from zero—matters.154  An anchoring heu-
ristic lowers the willingness of the fact-finder to determine that the
burdened party has prevailed, because people fail to adjust fully from
a given starting point, even if arbitrarily set.155  In sum, the burden of
persuasion is not a mere tiebreaker, which explains why lawyers and
judges fight and suffer over it in practice.

Again, this diagrammatic representation of the traditionally
viewed burden of persuasion appears fairly compatible with tradi-
tional probability.  But having to draw a fat 50% line encourages a
reconsideration of the proof standards.  And that reconsideration
leads to reformulating those standards to reflect the role of the new
logic.  The conclusion will be that this diagram for the burden of per-
suasion is fundamentally misleading.  The diagramed view thus needs
redrawing rather than mere refinement.  The law does not and should
not conform to the traditional academic view.

2. Reformulated View

a. Current Standards

The law has settled on three standards of proof that apply in dif-
ferent circumstances:  (1) The standard of preponderance of the evidence
translates into more-likely-than-not.  It is the usual standard in civil
litigation, but it appears throughout law.  (2) Next comes the interme-
diate standard or standards, often grouped under the banner of clear
and convincing evidence and roughly translated as much-more-likely-
than-not.  These variously phrased but equivalently applied standards
govern on certain issues in special situations, such as when terminat-
ing parental rights.156  (3) The standard of proof beyond a reasonable
doubt means proof to a virtual-certainty.  It very rarely prevails outside
criminal law.157

154 See Eyal Zamir & Ilana Ritov, Loss Aversion, Omission Bias, and the Burden of Proof
in Civil Litigation, 41 J. LEGAL STUD. 165, 197 n.23 (2012).
155 See Amos Tversky & Daniel Kahneman, Judgment Under Uncertainty: Heuristics

and Biases, 185 SCIENCE (n.s.) 1124, 1128 (1974).  An example of the anchoring heu-
ristic comes from a study involving subjects asked to estimate quickly, without paper
and pencil, the product of 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1, while another group faced 1 x 2
x 3 x 4 x 5 x 6 x 7 x 8; the first group’s median estimate was 2250, while the other’s
was 512; the correct answer is 40,320. Id.
156 See Santosky v. Kramer, 455 U.S. 745, 757 (1982) (“[T]his Court never has

approved a case-by-case determination of the proper standard of proof for a given
proceeding.”).
157 See generally Clermont, supra note 20, at 1118–21 (listing the standards of proof R

and their relative applications to different areas of the law).
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b. Relative-Plausibility Theory

The insightful relative-plausibility theory of Professor Ron Allen
shows a nontraditional embrace of relative judgment, in preference to
our weaker skills at absolute judgment of likelihood.158  He builds on
the story model of evidence-processing to produce another theoretical
brand of holism.  The relative-plausibility theory posits that the fact-
finder constructs the story (or stories) that the plaintiff is spinning
and another story (or stories) that the defendant is spinning.  The
fact-finder then compares the two stories (or collections of stories)
and gives victory to the plaintiff if the plaintiff’s version is more plausi-
ble than the defendant’s.159  This choice between alternative compet-
ing narratives is largely an ordinal process rather than a cardinal one.

Allen’s ordinal comparison cannot easily explain standards of
proof higher or lower than preponderance of the evidence.160  Its

158 See Allen & Jehl, supra note 110, at 929–43 (summarizing Allen’s previous work R
on the theory); see also Edward K. Cheng, Reconceptualizing the Burden of Proof, 122 YALE

L.J. (forthcoming 2013) (manuscript at 3–4, 6), available at http://ssrn.com/abstract
=2087254 (arguing that statisticians perform hypothesis testing by comparison, so that
“evidence scholars need only let go of their love for p > 0.5”; but incorrectly assuming
that theory calls for comparing the plaintiff’s story to each of the defendant’s stories
“separately, not simultaneously”); supra note 81 and infra note 166. R
159 The weight of the evidence methodology in science is a similar approach, as is the

differential diagnosis approach in medicine that diagnoses by successively eliminating
likely causes of a medical condition to reveal the best explanation. See Milward v.
Acuity Specialty Prods. Grp., Inc., 639 F.3d 11, 18 (1st Cir. 2011) (“The scientist
[when admitting expert evidence based on the weight of the evidence approach]
must (1) identify an association between an exposure and a disease, (2) consider a
range of plausible explanations for the association, (3) rank the rival explanations
according to their plausibility, (4) seek additional evidence to separate the more plau-
sible from the less plausible explanations, (5) consider all of the relevant available
evidence, and (6) integrate the evidence using professional judgment to come to a
conclusion about the best explanation.”); Westberry v. Gislaved Gummi AB, 178 F.3d
257 (4th Cir. 1999) (admitting expert evidence based on differential diagnosis).
These methods involve consideration and analysis of alternative explanations to get
the one that best explains the evidence, a mode of reasoning called inference to the best
explanation.  Allen is drifting in his thinking in this direction. See Ronald J. Allen &
Michael S. Pardo, Juridical Proof and the Best Explanation, 27 LAW & PHIL. 223, 226
(2008) (providing an account of the “abductive reasoning process of inference to the
best explanation”).  However, Larry Laudan, Strange Bedfellows: Inference to the Best
Explanation and the Criminal Standard of Proof, 11 INT’L J. EVIDENCE & PROOF 292
(2007), powerfully demonstrates that inference to the best explanation holds little
additional promise of explaining or illuminating standards of proof.
160 See Richard D. Friedman, “E” Is for Eclectic: Multiple Perspectives on Evidence, 87

VA. L. REV. 2029, 2046–47 (2001); cf. Clermont, supra note 20, at 1119–20, 1122–26 R
(discussing not only the standard of clear and convincing evidence, but also proce-
dure’s lower standards including slightest, reasonable, and substantial possibilities).
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more obvious, and admitted,161 difficulty is that it does not track well
what the law tells its fact-finders about how to proceed, and it diverges
from the law by compelling the non-burdened party to choose and
formulate a competing version of the truth.  Finally, it comes with bag-
gage, such as requiring acceptance of the story model.162

c. Reformulated Standards

Consider what else preponderance of the evidence, or its transla-
tion of more-likely-than-not, could mean in a comparative sense.

One could compare the proof to some threshold.  Although one
could say that the proof must exceed 50%, this formulation does not
accord with the import of real cases.  The law does not require the
completeness of proof that would be necessary to get a belief above
50%.  The law is willing to rest decisions on the evidence presented.163

The law does not inquire which side has the stronger evidence,
however.  It looks instead to belief in the burdened party’s position.164

Although one could measure the belief against some absolute mea-
sure, say, requiring that Bel(S) exceed 50%, the better approach is to
invoke the more powerful human ability of relative judgment by com-
paring beliefs.  One could compare Bel(S) relative to Bel(notS).165

But cf. Ronald J. Allen, The Nature of Juridical Proof, 13 CARDOZO L. REV. 373, 413
(1991) (attempting to explain the beyond-a-reasonable-doubt standard as not being
satisfied if the fact-finder “concludes that there is a plausible scenario consistent with
innocence,” while admitting that the clear-and-convincing standard is “troublesome”
under his theory because it seems cardinal); Ronald J. Allen & Brian Leiter, Natural-
ized Epistemology and the Law of Evidence, 87 VA. L. REV. 1491, 1528 (2001) (“[T]he
prosecution must provide a plausible account of guilt and show that there is no plausi-
ble account of innocence.”).
161 See Ronald J. Allen, Standards of Proof and the Limits of Legal Analysis 14

(May 25–26, 2011) (unpublished conference paper), available at http://ssrn.com/
abstract=1830344.
162 See Craig R. Callen, Commentary, Kicking Rocks with Dr. Johnson: A Comment on

Professor Allen’s Theory, 13 CARDOZO L. REV. 423 (1991) (arguing that for the purposes
of the study of evidence and fact-finding, the insights from cognitive science may be
more far-reaching than Professor Allen suggested in The Nature of Juridical Proof).
163 See Laudan, supra note 159, at 304–05 (“The trier of fact cannot say, ‘Although R

plaintiff’s case is stronger than defendant’s, I will reach no verdict since neither party
has a frightfully good story to tell.’  Under current rules, if the plaintiff has a better
story than the defendant, he must win the suit, even when his theory of the case fails
to satisfy the strictures required to qualify his theory as the best explanation.”).
164 See McBaine, supra note 79, at 248–49. R
165 See COHEN, supra note 102, at 255 (“The cardinal question to be settled by the R

trier of fact may always be construed as this: on the facts before the court, is the
conclusion to be proved by the plaintiff more inductively probable than its
negation?”).
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In comparing them, Bel(notS) is the belief in the negation of S,
not the complement of Bel(S).  It represents how much the fact-
finder actively disbelieves S, the fact in dispute.  The comparison thus
should look at actual belief in S and actual disbelief of S.

If you were to work with only those two beliefs, and discard the
indeterminate belief, the most obvious course in civil cases would be
to say that the burdened party should win if and only if Bel(S) >
Bel(notS).  You would decide for the plaintiff if Bel(S) exceeds
Bel(notS), but decide for the defendant if Bel(S) does not exceed
Bel(notS).

This comparative approach to the civil standard of proof does not
mean that the non-burdened party needs to formulate a competing
version of the truth, other than negation.  A belief in the falsity of the
burdened party’s version of the truth may develop naturally in the
course of trial.  It could arise even upon hearing only the burdened
party’s evidence.  The non-burdened party’s evidence, if any, should
contribute to raising Bel(notS).

Relatedly, the non-burdened party need not fight imaginary
fights.  Some scholars worry that looking at negation puts the bur-
dened party in the impossible situation of disproving every alternative
possibility.166  But that worry comes from confusing lack of belief with
disbelief.  Disbelieving S entails the degree to which the fact-finder

166 See, e.g., Michael S. Pardo, Second–Order Proof Rules, 61 FLA. L. REV. 1083 (2009)
(speaking of the comparison imposed by more likely than not, but using “negation”
in the sense of the complement of Bel(S)).  Pardo explains that the comparison

might mean the likelihood of the plaintiff’s factual allegations versus the
negation of those allegations, or it might mean the likelihood of the plain-
tiff’s allegations versus the likelihood of the defendant’s alternative allega-
tions.  The first interpretation appears to better fit the instructions, but it
fails . . . .  If the plaintiff must prove that some fact, X, is more probable than
its negation, not-X, then the plaintiff should have to show not only the
probability that the state of the world is such that X is true, but also the
probability of every other possible state of the world in which X is not true.
This would mean that in order to prevail, plaintiffs would have to disprove
(or demonstrate the low likelihood of) each of the virtually limitless number
of ways the world could have been at the relevant time.  This would be a
virtually impossible task, and thus, absent conclusive proof, plaintiffs would
lose.  This would plainly be inconsistent with the goals of the preponderance
rule, and thus some comparison with the defendant’s case is necessary.

In order to facilitate the goals of the preponderance rule, the plaintiff
ought to prevail whenever the likelihood of his allegations exceeds that of
the defendant’s.

Id. at 1093–94 (footnotes omitted).  The difficulty for theorists who compare the
plaintiff’s story to the defendant’s story, rather than to all versions of non-liability, is
that plaintiffs will recover more often than normatively desirable.  Realization of this
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thinks S is false.  The mere possibility of other states of the world in
which S is not true go into the uncommitted belief, not into
Bel(notS); recall that the “plausibility” of notS equals Bel(notS) plus
the uncommitted belief; again, the degree of believing that Katie is
not dead, or actually alive, is quite different from envisaging the
chance that she is possibly alive.  The proposed comparison involves
the belief in notS, and does not involve the plausibility of notS.

Now, as to the other two standards of proof, clear and convincing
evidence should mean Bel(S) >> Bel(notS).167  This standard would
not be that difficult to apply.  We are quite used to such a standard of
being clearly convinced, in life and in law.  Judges apply it on a
motion for a new trial based on the verdict’s being against the weight
of the evidence.168  Appellate courts use it in reviewing judge-found
facts.169  Those standards of decision mean that it is not enough to
disagree with the jury or the judge; the reviewer must think there was
a serious error.

However, the cases do not make very evident what clear and con-
vincing means.  Alternatively, or perhaps additionally, it imposes a
requirement about the completeness of evidence.  It may require
admission of enough evidence to reduce uncommitted belief to the
point that Bel(S) exceeds the plausibility of notS.  I am open to those
viewpoints, but unconvinced so far.

As to proof beyond a reasonable doubt, it is different in kind.  It
must mean more than Bel(S) >> Bel(notS).  Placing separate
demands on Bel(notS) and Bel(S), it should mean that no reasonable
doubt persists and that no great uncommitted belief remains.170

difficulty leads some of the theorists to argue that the aim of the system is not truth
but, say, acceptability of decision. See Nesson, supra note 113. R
167 See McBaine, supra note 79, at 263 (proposing an instruction to the effect that R

“the probability that they are true or exist is substantially greater than the probability
that they are false or do not exist”); Edmund M. Morgan, Instructing the Jury upon
Presumptions and Burden of Proof, 47 HARV. L. REV. 59, 67 (1933) (“[I]f the judge
charges that the burden is upon a party to prove a proposition by clear and convinc-
ing evidence, . . . it requires the jury to be convinced . . . that its truth is much more
probable than its falsity . . . .”); cf. Laudan, supra note 159, at 299–300 (discussing R
attempts to append such a notion to the approach of inference to the best
explanation).
168 See Clermont, supra note 20, at 1126–28, 1152–56 (describing new-trial R

practice).
169 See id. at 1128–30 (describing appellate review).
170 See Allen & Leiter, supra note 160, at 1528 (“[T]he prosecution must provide a R

plausible account of guilt and show that there is no plausible account of innocence.”);
McBaine, supra note 79, at 266 (“A reasonable doubt is a doubt which exists[ ] when R
. . . you cannot honestly say that it is almost certain that the defendant did the acts
which he is charged to have done.”); cf. Laudan, supra note 159, at 300–02 (discussing R



\\jciprod01\productn\N\NDL\88-3\NDL301.txt unknown Seq: 70  4-APR-13 15:47

1130 notre dame law review [vol. 88:3

No reasonable doubt means that no reasonable person could
hold Bel(notS) > 0.  On the view that anything is possible, zero as a
coarsely gradated degree of belief equates to a “slightest possibil-
ity.”171  Therefore, Bel(notS) > 0 refers to a step up from the slightest
possibility of innocence.  No reasonable fact-finder should see a “rea-
sonable possibility” of innocence.  In other words, for a conviction the
prosecutor must show that no reasonable possibility of innocence
exists.

No great uncommitted belief reflects the idea that Bel(S) cannot
be weak, measured in an absolute sense.  We do not want to convict
when, although there is some evidence of guilt, we really do not know
what happened.  The belief in guilt must outweigh all alternative pos-
sibilities, including fanciful ones.  The belief in guilt must exceed the
plausibility of innocence, so that Bel(S) > .50.  Given the usual limits
on available evidence, achieving such a high degree of absolute belief
represents a demanding standard.172

d. Compatibility of Reformulated and Current Standards

A reader always entertains the temptation, upon seeing what
looks like a plea for reconceptualization, to dismiss it as a pie-in-the-

attempts to append such notions to the approach of inference to the best
explanation).
171 See Michael J. Saks & Robert F. Kidd, Human Information Processing and Adjudi-

cation: Trial by Heuristics, 15 LAW & SOC’Y REV. 123, 126 (1981) (“Most legal decision
making, like that in many other areas of complex activity, is done under conditions of
uncertainty.”).  One can play with the notion of uncertainty, of course.  For example,
“to be certain of uncertainty . . . is to be certain of at least one thing.”  Milton Dawes,
Multiordinality: A Point of View, ETC, Summer 1986, at 128, 131; cf. Neal Gabler, The
Elusive Big Idea, N.Y. TIMES, Aug. 14, 2011 (Sunday Review), at 1, available at http://
www.nytimes.com/2011/08/14/opinion/sunday/the-elusive-big-idea.html (announc-
ing as the big idea that we are in a post-idea era).  Philosophers can do more than
play with the notion. See, e.g., Daniel Greco, Probability and Prodigality, 4 OXFORD

STUD. EPISTEMOLOGY (forthcoming 2013), available at http://web.mit.edu/dlgreco/
www/ProbAndProd.pdf (objecting to the view that what we know has a probability of
one); Gary Lawson, Proving the Law, 86 NW. U. L. REV. 859, 871–74 (1992) (discussing
possible Cartesian arguments regarding uncertainty).  For some propositions in
closed systems, uncertainty will seem rather thin, except in the metaphysical sense
that nothing is absolutely certain.  But in almost all circumstances calling for the
application of law, out in the real world, uncertainty will be a palpable concern. See
TWINING, supra note 1, at 104 (rebutting “the myth of certainty”). R
172 On justifying what still may seem to be a low threshold, Bel(S) > .50, see Ron-

ald J. Allen & Larry Laudan, Deadly Dilemmas, 41 TEX. TECH. L. REV. 65 (2008); Larry
Laudan & Harry D. Saunders, Re-thinking the Criminal Standard of Proof: Seeking Consen-
sus About the Utilities of Trial Outcomes, 7 INT’L COMMENT. ON EVIDENCE iss. 2, art. 1
(2009).
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sky academic musing.  When the reconceptualization involves the
standards of proof, the specialists have the added temptation of dis-
missing it as another of the common anti-probabilist rants or pro-
probabilist paeans.  After all, if my view were a sound one, someone
would have come up with it before.  So I hasten to undercut my con-
tribution by stressing that my ideas are not that new.  I am trying little
more than to explain what the law has been doing all along.

The easiest way to grasp the lack of newness is to picture an alter-
native fashion of converting from fuzzy beliefs back into a two-valued
output.  Picture a normalization process of disregarding the indeter-
minate beliefs and scaling Bel(S) and Bel(notS) up proportionately so
that they add to one.  Call the recalculations b(S) and b(notS).  If
Bel(S)=.50 and Bel(notS)=.20, then b(S)=.71 and b(notS)=.29.  These
new numbers represent much less mental distance from the tradi-
tional view of standards of proof, because b(S) > b(notS) if and only if
b(S) > .50.  Thus, preponderance could retain a meaning of likeli-
hood exceeding 50%, while clear and convincing means much more
likely than 50% and beyond a reasonable doubt means almost cer-
tainty.  This alternative renders my conceptualization much less jar-
ring, and it also demonstrates that I did not pull my formulations out
of thin air.

Yet, I resist taking that normalization route.  First, converting to
additive beliefs would reintroduce the probabilistic imaging that origi-
nally led us astray into all the problems and paradoxes of the tradi-
tional view.  Second, I contend that directly comparing Bel(S) and
Bel(notS) actually conforms better to the actual law than the probabil-
istic view does.  Third, normalization requires measurement of b(S)
and b(notS), a step otherwise unnecessary, and a step that is much
more difficult for humans than relative judgment.

The evidence at trial will support S to an extent while supporting
notS to another extent, and the reformulated standards say that the
fact-finder need only compare these two fuzzy beliefs.  How does the
current law actually state, say, preponderance of the evidence?  Con-
sider a couple of classic cases.

In Livanovitch v. Livanovitch,173 the trial court gave the following
charge: “If . . . you are more inclined to believe from the evidence that
he did so deliver the bonds to the defendant, even though your belief
is only the slightest degree greater than that he did not, your verdict
should be for the plaintiff.”174  The appellate court said:

173 131 A. 799 (Vt. 1926).
174 Id. at 800.
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The instruction was not erroneous.  It was but another way of saying
that the slightest preponderance of the evidence in his favor enti-
tled the plaintiff to a verdict. . . . All that is required in a civil case of
one who has the burden of proof is that he establish his claim by a
preponderance of the evidence. . . . When the equilibrium of proof
is destroyed, and the beam inclines toward him who has the burden,
however slightly, he has satisfied the requirement of the law, and is
entitled to the verdict.  “A bare preponderance is sufficient, though
the scales drop but a feather’s weight.”  This rule accords with the
practice in this state as remembered by the justices of this court, and
is well supported by the authorities.175

In Lampe v. Franklin American Trust Co.,176 one of the defendant’s
contentions was that the note in suit had been altered after it had
been signed by the defendant’s decedent.  The trial court refused the
defendant’s request for an instruction that the jury should find that
the instrument was not the decedent’s note

if you find and believe that it is more probable that such changes or
alterations have been made in the instrument after it was signed by
the deceased and without his knowledge and consent, than it is that
such alterations and changes were made at or about the time that
the deceased signed the instrument and under his direction and
with his knowledge and consent.177

Holding the refusal to have been proper, the appellate court said:
The trouble with this statement is that a verdict must be based upon
what the jury finds to be facts rather than what they find to be
“more probable.” . . . This means merely that the party, who has the
burden of proof, must produce evidence, tending to show the truth
of those facts, “which is more convincing to them as worthy of belief
than that which is offered in opposition thereto.”178

These two cases’ formulations sound contradictory.  But if one
interprets the quotations as speaking in terms of the coarsely gradated
belief in the fact compared with the coarsely gradated belief in the
fact’s negation, based on the evidence presented, the apparent contra-
diction evaporates.  They both seem to be saying that the burdened
party should win if and only if Bel(S) > Bel(notS).

Other courts sometimes express more divergent views of the stan-
dard of proof.  Some writers conclude that courts interpret prepon-
derance in one of three ways:  (1) “more convincing,” which requires
the burdened party to tell a better tale than the opponent tells; (2)

175 Id.
176 96 S.W.2d 710 (Mo. 1936).
177 Id. at 723.
178 Id. (quoting Rouchene v. Gamble Constr. Co., 89 S.W.2d 58, 63 (Mo. 1935)).
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“more likely than not,” which requires a showing of the fact’s exis-
tence stronger than the showing of its nonexistence; or (3) “really
happened,” which requires a showing by evidence of what probably
transpired outside in the real world.179  My approach would conform
to the middle option of (2), rather than either (1) relative plausibility
or (3) absolute measure.

In the end, I submit that comparison of coarsely gradated beliefs
is an accurate representation of what the law tells a fact-finder to do
with a standard of proof.  In civil cases, the fact-finder has to find that
Bel(S) is more likely than not, which means Bel(S) > Bel(notS).  Or as
the judge tells the jurors, preponderance means that the evidence
“produces in your minds belief that what is sought to be proved is
more likely true than not true”180 or “more probably true than
false.”181  By literally instructing fact-finders to decide between S and
notS, the law effectively urges them to focus on those two fuzzy beliefs
and compare them.

3. Implications of Reformulation

My views, then, are not seditious.  Overall I merely contend, in
accordance with the new logic’s teaching, that the law charges fact-
finders to form a set of fuzzy beliefs, while leaving some belief uncom-
mitted in the face of imperfect evidence, and then to apply the stan-
dard of proof by comparing their resultant belief in the burdened
party’s version to their belief in its negation.  Many observers of the
legal system would find that contention, putting its slightly new vocab-
ulary to the side, unobjectionable.

Tracing the implications of my contention reveals its hidden pow-
ers, however.  It implies that the fact-finders at the end of a case would
properly apply the standard to each separate element.  It also implies
that the fact-finders should start the case, being in a state of ignorance

179 See COVINGTON, supra note 113, at 99–100. R
180 3 O’MALLEY ET AL., supra note 119, § 104.01: R

“Establish by a preponderance of the evidence” means evidence, which
as a whole, shows that the fact sought to be proved is more probable than
not. In other words, a preponderance of the evidence means such evidence
as, when considered and compared with the evidence opposed to it, has
more convincing force, and produces in your minds belief that what is
sought to be proved is more likely true than not true.

181 Nissho-Iwai Co. v. M/T Stolt Lion, 719 F.2d 34, 38 (2d Cir. 1983) (“The term
‘preponderance’ means that ‘upon all the evidence . . . the facts asserted by the plain-
tiff are more probably true than false.’” (quoting Porter v. Am. Exp. Lines, Inc., 387
F.2d 409, 411 (3d Cir. 1968))); see McBaine, supra note 79, at 261–62; Morgan, supra R
note 167, at 66–67. R
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with lack of proof, at a zero belief.  Thus, two paradoxes in the nature
of legal proof simply vaporize.  The four parts of this Article generate
related insights.

First, the linguistic evaluations that humans tend to use in their
fuzzy logic, as opposed to quantifications, nicely express the law’s
development of a coarsely gradated scale of possibilities and probabili-
ties:  (1) slightest possibility, (2) reasonable possibility, (3) substantial
possibility, (4) equipoise, (5) probability, (6) high probability, and (7)
almost certainty.  And the coarseness of the scale of likelihood means
that the fact-finder in comparing beliefs will not have to draw paper-
thin distinctions.

Second, when the fact-finders face multiple elements, it has long
appeared that they seek the most believable story by applying the stan-
dard of proof to each element.  But theorists worry that this conjoined
story itself may not meet the standard of proof.  Rest assured, because
the law knows what it is doing.  The MIN operator demonstrates that
belief in the conjunction will match the belief in the least likely ele-
ment, which has already passed the standard of proof.

Third, the notion of burden of proof becomes much clearer.
The paradoxical difficulties in applying the burden to weak proof dis-
sipate.  For an example, a directed verdict motion by a civil defendant
meshes the burden of production with the new view of the preponder-
ance standard.  The motion requires the judge to ask if no reasonable
jury could view Bel(S) > Bel(notS).182  At the end of the plaintiff’s
case, if a reasonable Bel(notS) equals 0 (effectively a “slightest possi-
bility”), then the inequality requires a compatibly reasonable Bel(S) to
exceed 0 (effectively a “reasonable possibility”).  That the plaintiff
must have established a reasonable possibility is the embodiment of
the burden of production, and it is what keeps the plaintiff from sur-
viving with a mere feather’s weight of evidence.  An illustrative situa-
tion would be where the plaintiff has produced a little evidence, but it

182 The reference to a “reasonable” jury reflects the fact that on such a motion the
judge is reviewing the jury’s hypothesized application of the standard of proof.  The
judge’s standard of review turns on whether a jury could not reasonably, or rationally,
find for the non-movant.  That is, the defendant must show that a verdict for the
plaintiff, given the standard of proof, is not reasonably possible. See Clermont, supra
note 20, at 1126–27. R

We can state this standard of review simply and fuzzily in terms of the law’s
coarsely gradated scale of possibilities and probabilities, without the complications
that belief functions impose on the standard of proof.  The reason is that we do not
expect the judge to retain uncommitted belief in applying a standard of review.  The
“evidence” for applying the standard is complete.  We want from the judge the likeli-
hood of jury error in finding for the plaintiff, with the complement being the likeli-
hood of jury correctness in finding for the plaintiff.
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is “pure” evidence that gives the defendant no support.183  If a reason-
able jury could find for the plaintiff on such proof, the judge should
deny the directed verdict motion.  If the defendant then produces no
effective evidence during the rest of the trial, but moves again for a
directed verdict at the end of all the evidence, the judge should deny
the motion and the case should go to the jury.  The jury, if it were to
take the same view of the evidence as the judge hypothesized, could
find for the plaintiff—even on such thin evidence.

Fourth, a new understanding of how to apply the standard of
proof to the party with the burden of persuasion follows naturally,
even if not inevitably, from the foregoing logical conceptualization of
the nature of proof.  The standard should concede that upon incom-
plete, inconclusive, ambiguous, dissonant, and untrustworthy proof,
some of our belief will remain indeterminate.  The standard should
look only to committed belief, comparing belief in the burdened
party’s version versus disbelief.

Not only does this comparative approach comport with the natu-
ral cognitive method that follows from telling the fact-finders they
must decide for one side or the other, but also it does nothing to
interfere with the current procedural and substantive functioning of
the standard of proof.  For example, the traditional view of the pre-
ponderance standard as a showing of a probability greater than 50%
appeared appropriate for civil cases: among competing fixed stan-
dards,184 it minimizes the expected number of erroneous decisions

183 See Liu & Yager, supra note 126, at 18–19 (discussing Liebniz’s notions of pure R
and mixed evidence).
184 If we knew more about the base rates for the type of case or the realities of the

particular case itself, we might want to adjust the standard of proof.  For example, a
variable standard of proof, set on a case-by-case basis by the ideal judge, could serve
accuracy by offsetting the unavailability or inadmissibility of evidence in the particular
case. See Dominique Demougin & Claude Fluet, Deterrence Versus Judicial Error: A Com-
parative View of Standards of Proof, 161 J. INSTITUTIONAL & THEORETICAL ECON. 193
(2005) (arguing by sophisticated analysis for a variable standard of proof).  More gen-
erally, in an idealized system, one could argue that the standard of proof should
slightly vary issue-by-issue in response to the expected utility of each outcome. See
Richard A. Posner, An Economic Approach to Legal Procedure and Judicial Administration, 2
J. LEGAL STUD. 399, 414–16 (1973) (using economic analysis); cf. Richard D. Fried-
man, Standards of Persuasion and the Distinction Between Fact and Law, 86 NW. U. L. REV.
916, 926 (1992) (extending the arguments to law-determining).  But the path of the
law has not been toward variable standards of proof but instead toward standards
generally applicable for whole categories of cases—while making gross adjustments as
to whole categories of issues when substantive considerations, such as the high social
cost of criminally convicting the innocent, counsel adjustment.
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and also the expected sum of wrongful amounts of damages,185 which
is the goal that the law apparently pursues in preference to optimizing
incentives for primary conduct.186  My reformulated standard has the
same error-minimizing properties, but achieves them in the real world
where the law of the excluded middle does not hold and where some
indeterminacy prevails.  For an idea of a proof adapted from a proba-
bilist’s proof, let b(S)=p be the apparent probability that the defen-
dant is liable (for D dollars) under a two-valued view.  If Bel(S) >
Bel(notS), then p > 1/2; call p by the name p1 in that case.  If Bel(S) ≤
Bel(notS), call it p2.  On the one hand, under the preponderance

185 This argument for the preponderance standard is strong, because it seems
demonstrably optimal given two conditions that are plausible.  The first condition is
that an error in favor of the plaintiff is neither more undesirable nor less undesirable
than an error in favor of the defendant, or that a dollar mistakenly paid by the defen-
dant (a false positive) is just as costly to society as a dollar mistakenly uncompensated
to the plaintiff (a false negative).  The second condition is that the goal is to minimize
the sum of expected costs from these two types of error, that is, the system wants to
keep the amounts suffered mistakenly to a minimum.

Accepting that these conditions generally prevail outside the criminal law—and
discounting more intangible possibilities, such as there being differential perceptions
of loss and gain or varying marginal utilities of wealth that are worthy of considera-
tion—the preponderance standard should perform better than any other non-varia-
ble standard of proof.  The reason is that by so deciding in accordance with apparent
probabilities, the legal system in the long run will make fewer errors than, for exam-
ple, the many false negatives that a virtual-certainty standard would impose.  The pre-
ponderance standard also minimizes the system’s expected error costs.  Let p be the
apparent probability that the defendant is liable (for D dollars). If p > 1/2, call it p1;
and if p ≤ 1/2, call it p2.  On the one hand, under the preponderance standard, the
expected sum of false positives and false negatives over the run of cases is S[(1–p1)D +
p2D].  On the other hand, under a very high standard of proof that eliminates false
positives, the analogous sum is S[p1D + p2D].  Given that (1–p1) is less than p1, the
preponderance standard therefore lowers the system’s expected error costs. See D.H.
Kaye, The Error of Equal Error Rates, 1 LAW PROBABILITY & RISK 3, 7 (2002) (“The gen-
eral appeal of the [p > 1/2] rule lies in the fact that it minimizes expected losses.”
(citation omitted)); David Hamer, Probabilistic Standards of Proof, Their Complements and
the Errors That Are Expected to Flow from Them, 1 U. NEW ENG. L.J. 71 (2004); cf. Neil
Orloff & Jery Stedinger, A Framework for Evaluating the Preponderance–of–the–Evidence
Standard, 131 U. PA. L. REV. 1159 (1983) (considering bias in the distribution of
errors).
186 It could well be that the goal should not focus only on minimizing the sum of

expected costs from the two types of erroneous decisions measured from an ex post
perspective.  Going forward from decision, correct decisions matter too, in that they
increase the deterrent effect and reduce the chilling effect of the law’s applications.
From a social welfare point of view, the law should set the standard of proof only after
taking these effects into account. See Louis Kaplow, Burden of Proof, 121 YALE L.J. 738
(2012); see also Fredrick E. Vars, Toward a General Theory of Standards of Proof, 60 CATH.
U. L. REV. 1 (2010) (using a sophisticated utility analysis to set the standard for the
issue of mental incapacity in will contests).
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standard, the expected sum of false positives and false negatives over
the run of cases is S[(1–p1)D + p2D].  On the other hand, under a very
high standard that eliminates false positives, the analogous sum is
S[p1D + p2D].  Therefore, given that (1–p1) is less than p1, the refor-
mulated preponderance standard lowers the system’s expected error
costs.

To close, a comprehensive example would perhaps be beneficial.
Suppose that someone has seriously injured Suzie, in circumstances
suggesting fault.  She sues Tom, which means that she must prove his
identity as the tortfeasor—as well as fault, causation, and injury.  She
introduces a fair amount of evidence.

First, the fact-finder would assess that evidence and might con-
clude as follows:  (1) The evidence points to Tom being the perpetra-
tor.  If the fact-finder were a bettor, he would put the odds at 3:2, or
60%.  Using words, he would say that Tom was probably the perpetra-
tor.  (2) The question of fault was a tough one.  There are uncertain-
ties as to what was done, but there is also a vagueness concerning how
blameworthy the supposed acts really were.  The fact-finder needs
commensurable measures, so that he can evaluate a mix of random
and nonrandom uncertainty.  If forced to assess all the evidence on
this issue and put it on a scale of truth running from zero to one, he
would say .7.  He might feel more comfortable saying fault was proba-
ble.  (3) The acts, whatever they were, apparently caused the injury.
Proximate cause is about as vague and multivalent as a legal concept
can get.  The fact-finder is pretty convinced nevertheless.  He would
put causation at .8, or highly probable.  (4) Suzie’s injuries are not
really very vague or uncertain.  He would put this element of the tort
at .95, or beyond a reasonable doubt.  Note that the new conceptual-
ization changes nothing, to this point, regarding the fact-finder’s task
as traditionally envisaged.

Second, the fact-finder may want to combine these findings.
They are a mixture of probabilities and degrees of truth.  But viewing
them all as degrees of truth invokes the MIN operator, so that he can
say that Suzie’s story comes in at .6, or probable.  Suzie should win, by
the use of fuzzy logic.

Third, this approach does not do a terribly good job of account-
ing for the state of the evidence.  It still poses an odd question to the
fact-finder: given imperfect evidence, what is the degree to which the
plaintiff is right?  Belief functions work better here to reflect the fact-
finder’s actual knowledge: belief starts at zero, and some belief will
remain uncommitted in the absence of perfect evidence.  That is, on a
fact to which the standard of proof applies, the belief function route is
the one to take, rather than invoking the simplistic scale of likelihood
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just described.  Instead of saying that Tom’s fault is probable, the fact-
finder should speak and think in terms of degrees of belief.

Fourth, although belief functions do not require placement on a
scale, the fact-finder in effect might end in believing Suzie’s position
on Tom’s fault to be only substantially possible.  That situation does
not mean that Suzie should lose, however.  The fact-finder might, if
forced to express likelihood, believe the falsity of Tom’s fault merely
to a reasonable possibility.  All the fact-finder must do is to compare
belief and disbelief: all that preponderance of the evidence requires is
that the strength of the fact-finder’s belief that Tom was at fault must
exceed his belief that Tom was not at fault.  Belief functions thus add
the idea that the fact-finder in such a case must have a belief in the
case’s truth stronger than his belief in its falsity.  While some of the
fact-finder’s belief remains uncommitted, he did find Suzie’s position
to be a good one: more likely true than false.  So, Suzie should still
win, by the use of belief functions.

CONCLUSION

This Article deploys the new logic—in particular, fuzzy logic and
belief functions in their broad senses—to conceptualize the standards
of proof.  This was not a heavily prescriptive endeavor, which would
have tried to argue normatively for the best way to apply standards.
Instead, it was mainly a descriptive and explanatory endeavor, trying
to unearth how standards of proof actually work in the law world.
Compared to the traditionally probabilistic account, this conceptual-
ization conforms more closely to what we know of people’s cognition,
captures better what the law says its standards are and how it manipu-
lates them, and improves our mental image of the fact-finders’ task.
One virtue of the conceptualization is that it is not radically new, as it
principally acts to confirm the law’s ancient message that fact-finders
should simply compare their non-quantified views of the fact’s truth
and falsity.  The conceptualization leaves the law’s standards essen-
tially intact to accomplish their current purposes.  Another virtue is
that it nevertheless manages to resolve some stubborn problems of
proof, including the fabled conjunction paradox.  Thus, for under-
standing the standards of proof, degrees of fuzzy belief work better
than traditional probabilities.

In brief, the new logic reveals that the law wants fact-finders to
form degrees of belief that would conform to a fuzzy scale, to combine
them in a logical fashion while leaving some belief uncommitted in
the face of imperfect evidence, and then to apply the standard of
proof by comparing their resultant belief in the burdened party’s ver-
sion of fact to their belief in its negation.


